116 research outputs found

    AFPN: Asymptotic Feature Pyramid Network for Object Detection

    Full text link
    Multi-scale features are of great importance in encoding objects with scale variance in object detection tasks. A common strategy for multi-scale feature extraction is adopting the classic top-down and bottom-up feature pyramid networks. However, these approaches suffer from the loss or degradation of feature information, impairing the fusion effect of non-adjacent levels. This paper proposes an asymptotic feature pyramid network (AFPN) to support direct interaction at non-adjacent levels. AFPN is initiated by fusing two adjacent low-level features and asymptotically incorporates higher-level features into the fusion process. In this way, the larger semantic gap between non-adjacent levels can be avoided. Given the potential for multi-object information conflicts to arise during feature fusion at each spatial location, adaptive spatial fusion operation is further utilized to mitigate these inconsistencies. We incorporate the proposed AFPN into both two-stage and one-stage object detection frameworks and evaluate with the MS-COCO 2017 validation and test datasets. Experimental evaluation shows that our method achieves more competitive results than other state-of-the-art feature pyramid networks. The code is available at \href{https://github.com/gyyang23/AFPN}{https://github.com/gyyang23/AFPN}

    Development of one-step SYBR Green real-time RT-PCR for quantifying bovine viral diarrhea virus type-1 and its comparison with conventional RT-PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine viral diarrhea virus (BVDV) is a worldwide pathogen in cattle and acts as a surrogate model for hepatitis C virus (HCV). One-step real-time fluorogenic quantitative reverse transcription polymerase chain reaction (RT-PCR) assay based on SYBR Green I dye has not been established for BVDV detection. This study aims to develop a quantitative one-step RT-PCR assay to detect BVDV type-1 in cell culture.</p> <p>Results</p> <p>One-step quantitative SYBR Green I RT-PCR was developed by amplifying cDNA template from viral RNA and using <it>in vitro </it>transcribed BVDV RNA to establish a standard curve. The assay had a detection limit as low as 100 copies/ml of BVDV RNA, a reaction efficiency of 103.2%, a correlation coefficient (R<sup>2</sup>) of 0.995, and a maximum intra-assay CV of 2.63%. It was 10-fold more sensitive than conventional RT-PCR and can quantitatively detect BVDV RNA levels from 10-fold serial dilutions of titrated viruses containing a titer from 10<sup>-1 </sup>to 10<sup>-5 </sup>TCID<sub>50</sub>, without non-specific amplification. Melting curve analysis showed no primer-dimers and non-specific products.</p> <p>Conclusions</p> <p>The one-step SYBR Green I RT-PCR is specific, sensitive and reproducible for the quantification of BVDV in cell culture. This one-step SYBR Green I RT-PCR strategy may be further optimized as a reliable assay for diagnosing and monitoring BVDV infection in animals. It may also be applied to evaluate candidate agents against HCV using BVDV cell culture model.</p

    Development of one-step SYBR Green real-time RT-PCR for quantifying bovine viral diarrhea virus type-1 and its comparison with conventional RT-PCR

    Get PDF
    Background Bovine viral diarrhea virus (BVDV) is a worldwide pathogen in cattle and acts as a surrogate model for hepatitis C virus (HCV). One-step real-time fluorogenic quantitative reverse transcription polymerase chain reaction (RT-PCR) assay based on SYBR Green I dye has not been established for BVDV detection. This study aims to develop a quantitative one-step RT-PCR assay to detect BVDV type-1 in cell culture. Results One-step quantitative SYBR Green I RT-PCR was developed by amplifying cDNA template from viral RNA and using in vitro transcribed BVDV RNA to establish a standard curve. The assay had a detection limit as low as 100 copies/ml of BVDV RNA, a reaction efficiency of 103.2%, a correlation coefficient (R2) of 0.995, and a maximum intra-assay CV of 2.63%. It was 10-fold more sensitive than conventional RT-PCR and can quantitatively detect BVDV RNA levels from 10-fold serial dilutions of titrated viruses containing a titer from 10-1 to 10-5 TCID50, without non-specific amplification. Melting curve analysis showed no primer-dimers and non-specific products. Conclusions The one-step SYBR Green I RT-PCR is specific, sensitive and reproducible for the quantification of BVDV in cell culture. This one-step SYBR Green I RT-PCR strategy may be further optimized as a reliable assay for diagnosing and monitoring BVDV infection in animals. It may also be applied to evaluate candidate agents against HCV using BVDV cell culture model

    AGI for Agriculture

    Full text link
    Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry

    High prevalence of Rickettsia spp. in ticks from wild hedgehogs rather than domestic bovine in Jiangsu province, Eastern China

    Get PDF
    BackgroundSpotted fever group Rickettsia (SFGR), containing various pathogenic Rickettsia spp., poses remarkable negative influences to public health by causing various severe or mild diseases. Information regarding prevalence of SFGR in ticks in Jiangsu province, Eastern China, is still limited and needs urgent investigations.MethodsHedgehog- and bovine-attached ticks were collected from Jiangsu province, Eastern China. DNA of individual ticks was extracted for nested polymerase chain reaction amplifications targeting gltA, 16S ribosomal RNA (rrs), ompA, ompB, and sca4 genes following with sequencing. SFGR-specific IgG antibodies in sera of local donators were evaluated using ELISA.ResultsOverall, 144 (83.2%) of the 173 ticks from hedgehogs and 2 (1.2%) of the 168 ticks from bovine were positive for one of the three identified Rickettsia spp., with significant difference between the two groups (P = 3.6e-52). Candidatus Rickettsia principis (9; 5.2%) and R. heilongjiangensis (135; 78.0%) were detected in Haemaphysalis flava rather than in H. longicornis ticks from hedgehogs. R. heilongjiangensis (1; 0.6%) and Candidatus R. jingxinensis (or Candidatus R. longicornii) (1; 0.6%) were identified in H. longicornis and Rhipicephalus microplus ticks from bovine, respectively. Phylogenetic analysis indicated Candidatus R. jingxinensis belonged to R. japonica subgroup, whereas Candidatus R. principis belonged to a novel subgroup. Higher serological prevalence of spotted fever and SFGR-specific IgG antibody level in humans were observed around the investigated area than in urban areas, without significant difference.ConclusionCandidatus R. principis and Candidatus R. jingxinensis were identified in Jiangsu province, Eastern China, and fully genetically characterized for the first time. The higher prevalence of SFGR in hedgehog-attached ticks as well as the higher SFGR-specific IgG antibody level and seropositive rate in humans around the investigated area suggested that more attention should be paid to SFGR. This pathogen is usually transmitted or harbored by wild animals and ticks. This study provides important epidemiological data for both physicians and public health officers in developing early prevention and control strategies against potential Rickettsia infections and in the preparation of suitable testing and treatment needs for rickettsiosis in the endemic areas

    La polyploïdie existe chez l'espèce halophyte Atriplex halimus

    No full text
    Doctorat en sciences biologiques -- UCL, 199

    Exploitation de la variation somaclonale dans un programme d'amélioration pour la résistance à la salinité chez le riz (Oryza sativa L.)

    No full text
    Doctorat en sciences biologiques -- UCL, 199

    The complete chloroplast genome sequence of Swertia diluta (Gentianaceae)

    No full text
    Swertia diluta, a traditional Chinese medicine, is widely used to treat jaundice hepatitis, dysentery, dyspepsia, etc. The plastome is 153,691 bp in length, with one large single copy region of 83,860 bp, one small single copy region of 18,301 bp, and two inverted repeat (IR) regions of 25,765 bp. It contains 134 genes, including 84 protein-coding genes, 8 ribosomal RNA, and 37 transfer RNA. Phylogenetic tree shows that S. diluta is a sister species to S. mussotii. The complete chloroplast genome could provide genetic information of this species would contribute to the formulation of protection strategy

    Automatic contingency selection and ranking using an analytic hierarchical process

    No full text
    Electric Machines and Power Systems264389-398EMPS
    corecore