107 research outputs found

    Generalized MICZ-Kepler Problems and Unitary Highest Weight Modules

    Get PDF
    For each integer n≥1n\ge 1, we demonstrate that a (2n+1)(2n+1)-dimensional generalized MICZ-Kepler problem has an \mr{Spin}(2, 2n+2) dynamical symmetry which extends the manifest \mr{Spin}(2n+1) symmetry. The Hilbert space of bound states is shown to form a unitary highest weight \mr{Spin}(2, 2n+2)-module which occurs at the first reduction point in the Enright-Howe-Wallach classification diagram for the unitary highest weight modules. As a byproduct, we get a simple geometric realization for such a unitary highest weight \mr{Spin}(2, 2n+2)-module.Comment: 27 pages, Refs. update

    Learning Cross-domain Semantic-Visual Relation for Transductive Zero-Shot Learning

    Full text link
    Zero-Shot Learning (ZSL) aims to learn recognition models for recognizing new classes without labeled data. In this work, we propose a novel approach dubbed Transferrable Semantic-Visual Relation (TSVR) to facilitate the cross-category transfer in transductive ZSL. Our approach draws on an intriguing insight connecting two challenging problems, i.e. domain adaptation and zero-shot learning. Domain adaptation aims to transfer knowledge across two different domains (i.e., source domain and target domain) that share the identical task/label space. For ZSL, the source and target domains have different tasks/label spaces. Hence, ZSL is usually considered as a more difficult transfer setting compared with domain adaptation. Although the existing ZSL approaches use semantic attributes of categories to bridge the source and target domains, their performances are far from satisfactory due to the large domain gap between different categories. In contrast, our method directly transforms ZSL into a domain adaptation task through redrawing ZSL as predicting the similarity/dissimilarity labels for the pairs of semantic attributes and visual features. For this redrawn domain adaptation problem, we propose to use a domain-specific batch normalization component to reduce the domain discrepancy of semantic-visual pairs. Experimental results over diverse ZSL benchmarks clearly demonstrate the superiority of our method

    Sarrus-inspired deployable polyhedral mechanisms

    Get PDF
    Deployable polyhedral mechanisms (DPMs) have witnessed flourishing growth in recent years because of their potential applications in robotics, space exploration, structure engineering, and so forth. This paper firstly presents the construction, mobility and kinematics of a family of Sarrus-inspired deployable polyhedral mechanisms. By carrying out expansion operation and implanting Sarrus linkages along the straight-line motion paths, deployable tetrahedral, cubic and dodecahedral mechanisms are identified and constructed following tetrahedral, octahedral, and icosahedral symmetry, respectively. Three paired transformations with synchronized radial motion between Platonic and Archimedean polyhedrons are revealed, and their significant symmetric properties are perfectly remained in each work configuration. Subsequently, with assistant of equivalent prismatic joints, the equivalent analysis strategy for mobility of multiloop polyhedral mechanisms is proposed to significantly simplify the calculation process. This paper hence presents the construction method and equivalent analysis of the Sarrus-inspired DPMs that are not only valuable in theoretical investigation, but also have great potential in practical applications such as mechanical metamaterials, deployable architectures and space exploration

    Hamiltonian-path based constraint reduction for deployable polyhedral mechanisms

    Get PDF
    Most of the deployable polyhedral mechanisms (DPMs) are multi-loop overconstrained mechanisms that causes barriers for their applications due to the issues in assembly, operation and control. Yet, constraint reduction for these multi-loop overconstrained mechanisms is extremely challenging in kinematics. In this paper, by introducing the Hamiltonian path to investigate the 3D topological graphs of a group of Sarrus-inspired DPMs, we propose a systematic method for constraint reduction of multi-loop overconstrained DPMs. We demonstrate that through the removal of redundant joints with the assistant of tetrahedral Hamiltonian path, one equivalent simplest topological graph of tetrahedral mechanism is identified as a reduction basic unit. Subsequently, one simplest form of Sarrus-inspired cubic mechanism is obtained by investigating two Hamiltonian paths of its dual octahedron and sequentially arranging basic units. Furthermore, a total of nineteen simplest forms of Sarrus-inspired dodecahedral mechanisms are identified from seventeen Hamiltonian paths of its dual icosahedron. The overconstraints in each simplest Sarrus-inspired DPM are greatly reduced while preserving the original one-degree-of-freedom (DOF) motion behavior. The method proposed in this paper not only lays the groundwork for further research in wider deployable polyhedrons, but also inspires the reduction of other multi-loop overconstrained mechanisms, with potential applications in the fields of manufacturing, architecture and space exploration

    Reducing Construction Dust Pollution by Planning Construction Site Layout

    Get PDF
    Many construction activities generate fine particles and severely threaten the physical health of construction workers. Although many dust control measures are implemented in the industry, the occupational health risks still exist. In order to improve the occupational health level, this study proposes a new method of reducing the construction dust pollution through a reasonable site layout plan. This method is based on the field measurement and dust diffusion law. The dust diffusion law can be fitted based on the field monitoring data. With diffusion law, the average dust concentration exposed to workers of different site layouts can be simulated. In addition, the cost of the dust control method is a concern for site managers. Therefore, the total transportation cost reduction is another optimization objective. Finally, the multi-objective particle swarm optimization (MOPSO) algorithm is used to search for an optimized site layout that can reduce dust pollution and transportation cost simultaneously. The result shows that average dust concentration exposed to workers and total transportation cost are significantly reduced by 60.62 and 44.3, respectively. This paper quantifies the construction dust pollution and provides site managers with a practical solution to reduce the construction dust pollution at low cost

    Discovery of Novel 2-Aminopyridine Derivatives As ROS1 and ALK Dual Inhibitors to Combat Drug-Resistant Mutants including ROS1G2032R and ALKG1202R

    Get PDF
    Clinical treatment by FDA-approved ROS1/ALK inhibitor Crizotinib significantly improved the therapeutic outcomes. However, the emergence of drug resistance, especially driven by acquired mutations, have become an inevitable problem and worsened the clinical effects of Crizotinib. To combat drug resistance, some novel 2-aminopyridine derivatives were designed rationally based on molecular simulation, then synthesised and subjected to biological test. The preferred spiro derivative C01 exhibited remarkable activity against CD74-ROS1G2032R cell with an IC50 value of 42.3 nM, which was about 30-fold more potent than Crizotinib. Moreover, C01 also potently inhibited enzymatic activity against clinically Crizotinib-resistant ALKG1202R, harbouring a 10-fold potency superior to Crizotinib. Furthermore, molecular dynamic disclosed that introducing the spiro group could reduce the steric hindrance with bulky side chain (Arginine) in solvent region of ROS1G2032R, which explained the sensitivity of C01 to drug-resistant mutant. These results indicated a path forward for the generation of anti Crizotinib-resistant ROS1/ALK dual inhibitors

    Inhibitory effects of diarsenic trioxide (As2O3) on hepatocellular carcinoma cells exerted by regulation of promyelocytic leukemia protein levels

    Get PDF
    Previous Chinese research revealed that diarsenic trioxide (As2O3) inhibits acute promyelocytic leukemia (PML) cell proliferation and initiates apoptosis through degradation of the PML-retinoic acid receptor protein. This study was to analyse whether As2O3 also had an effect on hepatocellular carcinoma (HCC) cells. As2O3 effects on various HCC cell lines and primary HCC cells were investigated in time and dose series, including measurements of cell growth, PML mRNA and protein expression, xenografted tumor formation, and the self-renewal Oct4 and hepatocyte marker expressions in mouse model xenografts or cells treated with PML siRNA. The results were analyzed by immunocytochemistry, quantitative reverse transcription PCR and western blotting as well as indocyanine green and Periodic Acid Schiff staining. As2O3 inhibited HCC cell and HCC cell-derived xenograft tumor formation in a time-dependent manner and reduced PML protein expression in HCC cells, but had limited effects on PML mRNA levels in cell nuclei. The HCC cell line HuH7 treated with As2O3 showed a decreased expression of alpha-fetoprotein and increased expression and transcription of mature hepatocyte markers, indicating differentiation of HCC cells into hepatocytes. Cytokeratin 18 protein and mRNA levels as well as tyrosine aminotransferase and apolipoprotein B mRNA transcriptions were enhanced by As2O3 as were the numbers of indocyanine green and Periodic Acid Schiff stained cells. In addition, As2O3 downregulated the expression of Oct4. In conclusion, since As2O3 inhibited HCC cell proliferation and HCC cell-derived xenograft tumor formation it is suggested that an appropriate concentration of As2O3 might be a promising therapy to treat HCC
    • …
    corecore