187 research outputs found

    A multicenter study of fetal chromosomal abnormalities in Chinese women of advanced maternal age

    Get PDF
    AbstractObjectiveThis study aimed to determine the rates of different fetal chromosomal abnormalities among women of advanced maternal age in China and to discuss the possible misdiagnosis risks of newer molecular techniques, for selection of appropriate prenatal screening and diagnostic technologies.Materials and MethodsSecond trimester amniocentesis and fetal karyotype results of 46,258 women were retrospectively reviewed. All women were ≥ 35 years old with singleton pregnancies. The rates of clinically significant chromosomal abnormalities (CSCAs), incidence of chromosomal abnormalities, and correlations with age were determined.ResultsFrom 2001 to 2010, the proportion of women of advanced maternal age undergoing prenatal diagnosis increased from 20% to 46%. The mean age was 37.4 years (range, 35–46 years). A total of 708 cases of CSCAs, with a rate of 1.53% were found. Trisomy 21 was the most common single chromosome abnormality and accounted for 55.9% of all CSCAs with an incidence of 0.86%. Trisomy 13, trisomy 18, and trisomy 21, the most common chromosome autosomal aneuploidies, accounted for 73.6% of all CSCAs, with a rate of 1.13%. As a group, the most common chromosomal aneuploidies (13/18/21/X/Y) accounted for 93.9% of all abnormalities, with a rate of 1.44%. The incidence of trisomy 21, trisomy 13/18/21 as a group, and 13/18/21/X/Y as a group was significantly greater in women aged 39 years and older (p < 0.001), but was not different between women aged 35 years, 36 years, 37 years, and 38 years.ConclusionThese findings may assist in genetic counseling of advanced maternal age pregnant women, and provide a basis for the selection of prenatal screening and diagnostic technologies

    Influences of Different Active Carbons on the Catalytic Performance of Ni/C Catalysts for Vapor-Phase Carbonylation of Ethanol

    Get PDF
    Different active carbons, i.e. bamboo charcoal, cylindrical coal, fruit carbon. wood charcoal, and coconut charcoal, were used to prepare Ni/C catalysts for vapor-phase carbonylation of ethanol. The results revealed that the Ni/CC catalyst showed the highest catalytic activity for ethanol carbonylation with 96.1% of ethanol conversion and 93.2% of propionic acid selectivity, but the Ni/BC catalyst showed the lowest activity with 63.0% of ethanol conversion and 32.7% of propionic acid selectivity. The Ni/C catalysts were characterized by CO adsorption and temperature-programmed reduction. Meanwhile, N-2 physical adsorption, X-ray photoelectron spectroscopy, and temperature-programmed desorption were used to investigate the structural properties, the species and quantities of surface oxygen functional groups of active carbons. It was found that the catalytic performance of the Ni/C catalysts depended on the nature of active carbons greatly

    Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heparanase facilitates the invasion and metastasis of cancer cells, and is over-expressed in many kinds of malignancies. Our studies indicated that heparanase was frequently expressed in advanced gastric cancers. The aim of this study is to determine whether silencing of heparanase expression can abolish the malignant characteristics of gastric cancer cells.</p> <p>Methods</p> <p>Three heparanase-specific small interfering RNA (siRNAs) were designed, synthesized, and transfected into cultured gastric cancer cell line SGC-7901. Heparanase expression was measured by RT-PCR, real-time quantitative PCR and Western blot. Cell proliferation was detected by MTT colorimetry and colony formation assay. The <it>in vitro </it>invasion and metastasis of cancer cells were measured by cell adhesion assay, scratch assay and matrigel invasion assay. The angiogenesis capabilities of cancer cells were measured by tube formation of endothelial cells.</p> <p>Results</p> <p>Transfection of siRNA against 1496-1514 bp of encoding regions resulted in reduced expression of heparanase, which started at 24 hrs and lasted for 120 hrs post-transfection. The siRNA-mediated silencing of heparanase suppressed the cellular proliferation of SGC-7901 cells. In addition, the <it>in vitro </it>invasion and metastasis of cancer cells were attenuated after knock-down of heparanase. Moreover, transfection of heparanase-specific siRNA attenuated the <it>in vitro </it>angiogenesis of cancer cells in a dose-dependent manner.</p> <p>Conclusions</p> <p>These results demonstrated that gene silencing of heparanase can efficiently abolish the proliferation, invasion, metastasis and angiogenesis of human gastric cancer cells <it>in vitro</it>, suggesting that heparanase-specific siRNA is of potential values as a novel therapeutic agent for human gastric cancer.</p

    Small RNAs Targeting Transcription Start Site Induce Heparanase Silencing through Interference with Transcription Initiation in Human Cancer Cells

    Get PDF
    Heparanase (HPA), an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in human cells. In this study, transfection of siRNA against −9/+10 bp (siH3), but not −174/−155 bp (siH1) or −134/−115 bp (siH2) region relative to transcription start site (TSS) locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2), histone H3 lysine 27 trimethylation (H3K27me3) or active chromatin marker acetylated histone H3 (AcH3). The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB), but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (−9/+10 bp) into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells
    corecore