21 research outputs found

    Model and observation of dispatchable region for flexible distribution network

    Get PDF
    Soft open points (SOPs), defined as the power electronic devices installed to replace normally open points in distribution network, can improve the flexibility of power control and thus further enhance the reliability and economy of power grids. Flexible distribution network (FDN) is a system-level concept to describe the distribution network equipped with multiple SOPs. Region method is to describe the secure range of the system operating in a geometric view. This paper adopts the region method to observe FDN for the first time. Firstly, the model of dispatchable region of FDN is proposed. The constraints of region space are formulated, considering SOPs, power flow, thermal capacity and voltage profile. Secondly, a simulation-based observation approach is also proposed to obtain the region projections on 2D and 3D sub-space. To illustrate the approach clearly, 2 small cases are given preceding a 7-feeders IEEE RBTS case. The region projections of case grids are observed and their topological characteristics are compared with those of traditional distribution network (TDN). The results indicate that FDN has advantages over traditional distribution network in operation security. For example, the region projections of FDN on 2-dimensional sub-space are about 2ā€“4 times larger than those of TDN with the same network topology. The dispatchable region can be further developed into a useful tool for the secure and high-efficient operation of FDN in the future

    Research on new energy vehicle charging prediction based on Monte Carlo algorithm and its impact on distribution network

    Get PDF
    With the vigorous promotion of new energy policies, the large-scale charging of new energy vehicles has put forward higher requirements for the safety and stability of the distribution network. Based on the daily driving habits and charging patterns of new energy vehicles, a Monte Carlo sampling algorithm was used to establish a charging load model for new energy vehicles. The model analyzed the driving range, charging load, and time related parameters of new energy vehicles. By analyzing the law of daily charging power of new energy vehicles, the overall trend of charging load of new energy vehicles is obtained. Combined with the daily electricity consumption law of the distribution network, the total load of the distribution network is obtained, and the degree of impact on the distribution network is analyzed. This provides direction for the scheduling of future electric vehicle charging behavior and the construction of related supporting facilities, and provides strong guidance for the optimization and upgrading of the distribution network

    In situ synchrotron X-ray diffraction analysis of deformation behaviour in Tiā€“Ni-based thin films

    Get PDF
    Deformation mechanisms of as-deposited and post-annealed Ti50.2Ni49.6, Ti50.3Ni46.2Cu3.5 and Ti48.5Ni40.8Cu7.5 thin films were investigated using the in situ synchrotron X-ray diffraction technique. Results showed that initial crystalline phases determined the deformation mechanisms of all the films during tensile loading. For the films dominated by monoclinic martensites (B19'), tensile stress induced the detwinning of type-II twins and resulted in the preferred orientations of (002)B19' parallel to the loading direction (|| LD) and (020)B19' perpendicular to the LD ([perpendicular] LD). For the films dominated by austenite (B2), the austenite directly transformed into martensitic variants (B19') with preferred orientations of (002)B19' || LD and (020)B19' [perpendicular] LD. For the Ti50.3Ni46.2Cu3.5 and Ti48.1Ni40.8Cu7.5 films, martensitic transformation temperatures decreased apparently after post-annealing because of the large thermal stress generated in the films due to the large differences in thermal expansion coefficients between the film and substrate

    Total supply capability of electricity distribution networks considering flexible interconnection of lowā€voltage service transformers

    No full text
    Under the target of ā€˜emission peak and carbon neutralityā€™, electricity distribution networks will massively access lowā€carbon technologies, which will result in problems such as insufficient hosting capacity, unbalanced electricity loads, degraded power quality etc. The lowā€voltage flexible distribution network (LVFDN), which interconnects its lowā€voltage service transformers using flexible power electronic devices (flexible interconnected devices [FIDs]) is considered an effective means to deal with the challenges above. The total supply capability (TSC) of LVFDN is proposed. Firstly, the typical structures of LVFDN and their operation modes are proposed. Then, the TSC model of LVFDN, which formulates flexible power flow control and multiā€level (mediumā€voltage feeder and lowā€voltage flexible interconnection) load transfer is proposed. Due to the nonā€linear nonā€convex characteristics of the proposed TSC model, a new algorithm based on the ā€˜branch and bound algorithmā€™ is also provided. In the case study, the TSC of an actual electricity distribution network is calculated and tested by the Nā€1 verification method. Finally, the variations of TSC with different capacities of the lowā€voltage FID are analysed. Suggestions for the planning and operation of LVFDN are also given. A theoretical basis for the application of flexible interconnection technology in lowā€voltage electricity distribution networks is provided

    The chargeā€discharge compensation pricing strategy of electric vehicle aggregator considering users response willingness from the perspective of Stackelberg game

    No full text
    Abstract With the rapid increase of electric vehicle (EV) ownership, the impact of EV charging load on the power grid is becoming more and more prominent. To reasonably guide EV charging/discharging to participate in Demand Response (DR) and help the power grid achieve peak cutting and valley filling, the chargeā€discharge compensation pricing strategy of EV Aggregator (EVA) considering user response willingness from the perspective of Stackelberg game is proposed. Firstly, EVA, as the leader, provides chargeā€discharge compensation price, to maximise its income within a day, taking into account user satisfaction constraints. Secondly, a user response willingness model is established. User engagement is used to describe the change in the number of EV responses with the change of the chargeā€discharge compensation price by EVA and select the random EV set that accepts EVA chargeā€discharge guidance. Finally, EV, as a follower, conducts charging/discharging behaviour to minimise the charging cost. By using the Karushā€“Kuhnā€“Tucker (KKT) condition, strong duality theory and iterative method, the strategy equilibrium solution is solved. The results show that considering the user response willingness can effectively reduce the decision risk when EVA participates in bidding. Although EVA income slightly decreases considering the response willingness, the average user satisfaction increases by 0.1

    An Online Control Method of Reactive Power and Voltage Based on Mechanismā€“Data Hybrid Drive Model Considering Sourceā€“Load Uncertainty

    No full text
    The uncertainty brought about by the high proportion of distributed generations poses great challenges to the operational safety of novel distribution systems. Therefore, this paper proposes an online reactive power and voltage control method that integrates sourceā€“load uncertainty and a mechanismā€“data hybrid drive (MDHD) model. Based on the concept of a mechanism and data hybrid drive, the mechanism-driven deterministic reactive power optimization strategy and the stochastic reactive power optimization strategy are used as training data. By training the data-driven CNNā€“GRU network model offline, the influence of sourceā€“load uncertainty on reactive power optimization can be effectively assessed. On this basis, according to the online source and load predicted data, the proposed hybrid-driven model can be applied to quickly obtain the reactive power optimization strategy to enable fast control of voltage. As observed in the case studies, compared with the traditional deterministic and stochastic reactive power optimization models, the hybrid-driven model not only satisfies the real-time requirement of online voltage control, but also has stronger adaptability to sourceā€“load uncertainty

    Dispatching Strategy for Low-Carbon Flexible Operation of Park-Level Integrated Energy System

    No full text
    In the face of the dual crisis of energy shortages and global warming, the vigorous development of renewable energy represented by wind-solar energy is a significant approach towards achieving energy transition, carbon peaking, and carbon neutrality goals. Targeting the park-level integrated energy system (PIES) with high penetration of wind-solar energy, we propose a day-ahead dispatching strategy that takes into account the flexible supply and the reward-punishment ladder-type carbon trading mechanism (RPLTCTM). Firstly, RPLTCTM and carbon capture equipment (CCE) are considered in the dispatching model, and the mechanism of coordinated operation of CCE and RPLTCTM is explored to further improve the system’s ability to restrain carbon emissions. Secondly, power-based flexibility indicators (PFIs) are adopted to quantitatively evaluate the flexibility supply, and based on the load demand response characteristics, the dispatchable resources on the load side are guided to improve the system’s operation flexibility. On this basis, a multi-objective optimal dispatching model that takes into account the carbon emission cost, energy cost, and flexibility supply are constructed, and the original problem is transformed into a mixed-integer single-objective linear problem through mathematical equivalence and flexibility cost. Finally, simulation examples validate that the economy, flexibility, and low-carbon level of the dispatching plan can be synergistically improved by the proposed strategy

    Dispatching Strategy for Low-Carbon Flexible Operation of Park-Level Integrated Energy System

    No full text
    In the face of the dual crisis of energy shortages and global warming, the vigorous development of renewable energy represented by wind-solar energy is a significant approach towards achieving energy transition, carbon peaking, and carbon neutrality goals. Targeting the park-level integrated energy system (PIES) with high penetration of wind-solar energy, we propose a day-ahead dispatching strategy that takes into account the flexible supply and the reward-punishment ladder-type carbon trading mechanism (RPLTCTM). Firstly, RPLTCTM and carbon capture equipment (CCE) are considered in the dispatching model, and the mechanism of coordinated operation of CCE and RPLTCTM is explored to further improve the systemā€™s ability to restrain carbon emissions. Secondly, power-based flexibility indicators (PFIs) are adopted to quantitatively evaluate the flexibility supply, and based on the load demand response characteristics, the dispatchable resources on the load side are guided to improve the systemā€™s operation flexibility. On this basis, a multi-objective optimal dispatching model that takes into account the carbon emission cost, energy cost, and flexibility supply are constructed, and the original problem is transformed into a mixed-integer single-objective linear problem through mathematical equivalence and flexibility cost. Finally, simulation examples validate that the economy, flexibility, and low-carbon level of the dispatching plan can be synergistically improved by the proposed strategy
    corecore