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With the vigorous promotion of new energy policies, the large-scale charging of
new energy vehicles has put forward higher requirements for the safety and
stability of the distribution network. Based on the daily driving habits and charging
patterns of new energy vehicles, a Monte Carlo sampling algorithm was used to
establish a charging load model for new energy vehicles. The model analyzed the
driving range, charging load, and time related parameters of new energy vehicles.
By analyzing the law of daily charging power of new energy vehicles, the overall
trend of charging load of new energy vehicles is obtained. Combinedwith the daily
electricity consumption law of the distribution network, the total load of the
distribution network is obtained, and the degree of impact on the distribution
network is analyzed. This provides direction for the scheduling of future electric
vehicle charging behavior and the construction of related supporting facilities, and
provides strong guidance for the optimization and upgrading of the distribution
network.
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1 Introduction

Against the backdrop of energy scarcity, severe environmental pollution, and the
expected “dual carbon” policy of global climate change (Shen et al., 2022; Pinzan et al.,
2023), electric vehicles (Hereinafter referred to as “EVs”) have gradually become the
mainstream means of transportation, and public transportation is gradually transitioning
towards electric power. It has irreplaceable advantages in reducing carbon emissions and
promoting the establishment of environmentally friendly homes. At present, EVs have
become the focus of Transportation planning and the direction of vehicle enterprises’ R&D,
and the market share has gradually expanded (Sidharthan and Arefi, 2021; Cabrera-Tobar
et al., 2022). In response to the new national policies on the distribution and planning
development of new energy vehicles and charging stations, considering their impact on the
power system, analyzing the hybrid charging station system of renewable energy systems
such as solar photovoltaic and wind energy (Bastida-Molina et al., 2021), and evaluating the
development of new energy vehicles and the planning and construction of the power system
have far-reaching significance (Kang et al., 2022; Manousakis et al., 2023).
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The calculation of charging load for EVs is of great
significance for power system planning and operation as it
serves as the basis for analyzing the impact of EV on the
distribution network (Zanvettor et al., 2022). Reference (Ma
et al., 2023) established a charging load model for EVs based
on the travel characteristics of EVs drivers and the distribution of
charging facilities, and certain actual statistical data. It did not
analyze the impact of charging load and access points on the
distribution network. Reference (Hua et al., 2022) takes the
highest basic load of the distribution network as the objective
function, and the charging characteristics of EVs and the output
capacity of the distribution network as constraints, including the
substation capacity of supporting substations, transmission line
capacity, and voltage of relevant nodes in the distribution
network. It analyzes the charging load of EVs, without
considering their driving habits and charging randomness.
Reference (Qian et al., 2022) A charging load prediction model
for EVs was constructed, based on the characteristics of vehicle
driving behavior. The region of the vehicle was determined
through a function, and the position of EVs was described
using Weibull probability distribution to form the vehicle’s
charging network, and constructing charging load prediction
models for private electric vehicles and electric taxis. Reference
(Zhou et al., 2022) proposes a novel predictive energy
management strategy for smart communities, optimizing usage
in buildings and electric vehicle charging stations. This approach
successfully balances demand response, providing significant
energy efficiency improvements validated through simulation
studies. Reference (Klingert and Lee, 2022) Using the
characteristics of a real city in Germany, including
transportation and mobility, to study the impact of electrified
transportation on the distribution network. Findings show grid
load sensitivity to charging station distribution, but behavior

changes can reduce local peaks by 50%. It contributes to
dynamic simulation research using real mobility data, albeit
with spatialization and randomization challenges. Reference
(Palahalli et al., 2022) explores the impact of large-scale EV
integration into a medium voltage distribution network, using
a 69-bus test network. It models EV charging behavior based on a
measurement dataset, and analyses the effects on the network
using probabilistic load flow simulation, focusing on voltage
distribution and unbalance factor at different times of day.
Reference (Vashisth et al., 2023) analyzed the impact of EVs
on solar power supply networks under different penetration rates,
proposed two electric vehicle models, and studied their voltage
distribution. Using the convex relaxation technique of AC-OPF,
an IEEE 33 bus network with time of use electricity price was
analyzed. It also explored the sensitivity of voltage distribution to
charging price, but it involved fewer charging vehicles and did not
consider the driving and charging characteristics of the vehicles.
Reference (Demirci et al., 2023; Hussien et al., 2023) studied the
impact of EV charging and discharging on the distribution
network, clarifying the environmental risks caused by
uncoordinated EV charging on the network, distribution
network, and power equipment. Reference (Liu et al., 2023)
analyzed the impact of EVs charging loads on the distribution
network using different permeabilities, specifically in terms of grid
losses and voltage drops, but did not take into account the driving
characteristics of EVs. The SPA based uncertainty model
proposed in reference (Gong et al., 2020) aims to minimize the
fluctuation and cost of EVS charging, taking into account seasonal
characteristics. It can well track the output of renewable energy
and reflect its fluctuation characteristics.

On the basis of considering the motion mode and charging
behavior of EVs, this article establishes a Monte Carlo sampling
algorithm based calculation method and model for the total

FIGURE 1
Probability distribution map of daily driving mileage.

Frontiers in Energy Research frontiersin.org02

Li et al. 10.3389/fenrg.2023.1269041

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1269041


charging load of electric vehicles. Based on the charging habits of
EVs, the starting time, total charging duration, total energy
consumption, and daily driving distance of EVs are predicted.
Combined with the daily basic electricity load of the distribution
network, the impact of EV charging patterns and penetration rates
on the distribution network is analyzed. This model can be used to
simulate power systems with various capacities of EVs and
different nodes, providing a model basis for the impact of EVS
disorderly charging on distribution networks in the future,
providing direction for the future scheduling of EV charging
behavior and the construction of related supporting facilities,
and providing strong guidance for the optimization and
upgrading of the distribution network.

2 EV charging model

By conducting research and processing on the driving data of
electric vehicles in a certain region of Tianjin within a month, a
charging model for electric vehicles was obtained, including daily
mileage, charging time, charging power, and battery capacity. Please
refer to the following text for details.

2.1 Probability distribution of daily distance
traveled

Assuming that the driving habits of electric vehicle users are the
same as those of regular fuel vehicle users, organizing research data,
it is concluded that the daily driving distance follows a logarithmic
normal distribution f ~ Log −N(μs, σ2s ), The probability density
function is shown in Eq. 1:

fa x( ) � 1
x

1
σs

���
2π

√ exp − lnx − μs( )2
2σ2s

( ) (1)

In the equation, take the mean μs� 3.2, variance σs� 0.88.
The probability distribution of daily distance for ordinary

household EV is shown in Figure 1.
Assuming that the new energy vehicle is fully charged before

each trip, calculate the daily distance traveled by the new energy

vehicle and obtain the probability distribution of the EV’s charging
state.

2.2 Probability distribution of initial charging
time

The return time of EV f follows normal distribution, that is
f −N(μs, σ2s ), The probability density function is Eq. 2:

fb x( ) �
1

σS
���
2π

√ exp − x − μs( )2
2σ2S

( )
1

σS
���
2π

√ exp − x+24−μs( )2
2σ2S

( )
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
μs−12< x< 24
0< x< μs−12 (2)

In the equation, take the mean μs� 17.6, variance σs� 3.4.
The probability distribution of the initial charging time can be

obtained as shown in Figure 2.

2.3 Probability distribution of total charging
power

The time distribution of total electric vehicle charging power is
shown in Figure 3, which is sourced from the total charging power
data of an electric vehicle charging station in a certain area of
Tianjin within a month, including the average total charging power
of various vehicle models, including private cars, ride hailing cars,
logistics vehicles, etc., within 24 h. From the graph, it can be seen
that the charging peak of EVs during the day is mainly
concentrated during the rush hour of commuting and long
periods of parking. The charging peak of EVs is around 20:
00 every day.

2.4 Probability distribution of battery
capacity

The battery capacity of EVs varies depending on the vehicle
model, usage diagram, and battery material. It can be seen from

FIGURE 2
Probability distribution diagram of initial charging time.

FIGURE 3
Probability distribution of charging power time.
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Big data that the capacity of most civil EVs batteries is widely
distributed between 20 and 50 kW h. In this paper, the uniform
distribution of 20–50 kW h is selected to represent the different
battery capacities of EVs. The probability density function is
Equation 3:

fc x( ) �
1
10
0

⎧⎪⎨⎪⎩ 20≤x≤ 30
other

(3)

3 Introduction toMonte Carlo sampling

3.1 Monte Carlo simulation

Monte Carlo Method (An and Zhang, 2023) mainly using
computer generated “random numbers”, Its essence is probability
methodology (Shirley et al., 2023), By simulating experiments with
infinitely large samples, the frequency of events can be obtained,
minimizing the error in the probability of event occurrence as much
as possible, and approaching the probability of real events infinitely.

Establish amatching probabilitymethodologymodel based on actual
engineering, so that the parameter settings, probability distribution, and
expectations of the model are infinitely close to actual engineering. Using
the Monte Carlo method, multiple simulations can be conducted on the
range and charging power of electric vehicles, greatly improving the
efficiency and accuracy of the simulation.

g (x) is the functional model of actual engineering, and X is the
discrete random variable of the function. The expected expression of
the function is shown in Eq. 4:

E g X( )( ) � ∑
x∈X

g x( )f x( ) (4)

When X is a continuous random variable, the expected value
expression of g (x) is shown in Eq. 5:

E g X( )( ) � ∫
x∈X

g x( )f x( )d x( ) (5)

Where f (x) is the probability density function of the random
variable x.

(Xl, X2, X3 . . .Xn) represents n random samples taken from the
population x. Based on the sample values, the mean value of g (x) can
be calculated, and E (g (x)) can be estimated by Monte Carlo
estimation method:

E g X( )( ) � 1
n
∑n
i�1
g xi( ) (6)

The final result obtained based on the simulation method is an
estimated value, rather than the actual solution of the problem, so
there must be errors. On the basis of variance, the error of Monte
Carlo simulation method is analyzed.

FIGURE 4
Charging locations and types of EV.

FIGURE 5
Charging load calculation flow chart based on Monte Carlo
simulation.
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3.2 Error analysis of Monte Carlo simulation
method

If X is a discrete random variable, then the variance Var(�gn(x))
can be expressed as:

Var �gn x( )( ) � Var
1
n
∑n
i�1
g xi( )⎛⎝ ⎞⎠

� 1
n
∑
x∈X

g x( ) − E g X( )( )[ ]2f x( )
(7)

When X is a continuous random variable of the function, the
function Var(�gn(x)) can be expressed as:

Var �gn x( )( ) � Var
1
n
∑n
i�1
g xi( )⎛⎝ ⎞⎠

� 1
n
∫

x∈X

g x( ) − E g X( )( )[ ]2f x( )dx
(8)

On the basis of Kolmogorov’s theorem of large numbers (Misra
et al., 2023), the random variables g (xi),i = 1,2,3, . . . ,n are

FIGURE 6
Daily distance of EV generated by Monte Carlo.

FIGURE 7
Charging amount of EV generated by Monte Carlo after daily driving.
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independent of each other and follow the same probability
distribution. If the mathematical expected value exists, then:

P lim
n→∞( ) 1

n
∑n
i�1
g xi( )

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ � E g X( )( )� 1 (9)

From the above formula, when n is infinite, the estimated value
g(xn) of random variable in Monte Carlo simulation converges to
E(g(x)) with probability 1.

On the basis of Central limit theorem, random variable g (xi),
i� 1, 2, 3, . . . , n is independent of each other and follows the same
probability distribution. If the mathematical expected value exists and the
variance Var is not equal to 0, then when n approaches infinity, there is:

The random variable Yn � (gn(x)−E(g(X)))�������
Var(gn(x))

√
/
�
n

√ obeys the standard
Normal distribution N (0,1), and it is concluded that:

P Ya<xa( )Yn →
1���
2π

√ ∫xa

−∞
e−

1
2x

2
d x( ) (10)

In the simulation method, the random variable g (xi),
i� 1, 2, 3 . . . , n; If all the above conditions are met, then any xa >
0 will have:

P Yn| |<xa( ) � P �gn x( ) − E g X( )( )∣∣∣∣ ∣∣∣∣( )<
xa

����������
Var �gn x( )( )√

�
n

√ → 1���
2π

√ ∫xa

−∞
e−

1
2x

2
d x( )

(11)

FIGURE 8
Charging time after daily driving of Monte Carlo generated EV.

FIGURE 9
Start time of charging for Monte Carlo generated EV.
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In the equation |�gn(x) − E(g(X))|< xa
�������
Var(�gn(x))

√ �
n

√ , the
approximate probability 1-a holds, where a represents the
confidence level and 1-a represents the estimated confidence
level. The speed order at which the estimated value converges to
the actual solution �gn(x) of the problem is o(n−1

2).
The values a and xa in the above equation can be determined by

looking up the integral table. When confidence a is given, the error
value ε of Monte Carlo simulationmethod is determined by variance
and sample size. If the variance Var(�gn(x))≠ 0, the definition of
error value of Monte Carlo simulation method is as follows (12):

ε � xa

����������
Var �gn x( )( )√

n
(12)

The variance coefficient b is used here to represent the
simulation error:

β �
�������������
Var E �gn x( )( )( )√
E �gn x( )( ) �

������������
Var �gn x( )( )/n√
E �gn x( )( ) (13)

n � Var gn x( )( )
βE �gn x( )( )[ ]2 (14)

From Equation 14 above, it can be seen that the computational
difficulty of Monte Carlo sampling simulation is not affected by the
distribution network. Therefore, the Monte Carlo sampling simulation
method can be applied to the power system in various scenarios, and can
solve the problem of multiple EVs accessing the distribution network
and the correlation of each node of the power system. The calculation
amount of Monte Carlo sampling simulation method is inversely
proportional to the square of variance coefficient, and is proportional
to the variance. Therefore, under certain accuracy requirements,
reducing variance is a means to accelerate computational efficiency.

FIGURE 10
Connection of EV with the same charging power to different nodes.

FIGURE 11
Node diagram of EV with different charging powers connected to the same node.
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4 Charging load model of EV based on
Monte Carlo sampling algorithm

4.1 Calculation model for charging load
of EV

The total electricity load of EVs is the sum of the electricity
consumption of each EV, and the calculation of the total load takes
into account the randomness of charging start time and vehicle SOC.

The total charging energy consumption is measured in days,
with time intervals of minutes. The total charging energy of EVs at
the i-th moment is:

Li � ∑N

n�1Pn,i (15)

In the formula: Li is the total charging power in the i-th minute,
i � i � 1, 2, . . . , 1440; N represents the total number of EV; Pn,i is
the charging power of the nth vehicle in the i-th minute.

Define the jth charging behavior of the nth new energy
vehicle as S based on charging demand SCn,j or SNC

n,j . Type

1 charging behavior SNC
n,j , without the constraint of charging

duration, the charging process continues until the battery is fully
charged; Type 2 charging behavior SCn,j, with a constraint on
charging duration, stops charging at the end of the charging
period regardless of whether it is fully charged or not. Taking
private cars as an example, unit parking lots and residential
parking lots have a longer charging time, and EV can be fully
charged, which is the first type of charging behavior; Charging in
the parking lot of shopping malls and supermarkets has a limit
on the charging time, which is the second type of charging
behavior. The charging location and type of private car are
shown in Figure 4.

4.2 Charging load calculation of EV based on
Monte Carlo simulation

Assuming that the power grid does not control the charging
behavior of electric vehicles, they will start charging immediately
after being connected to the grid. Based on empirical values and
research results, it can be concluded that the power consumption of
electric vehicles per 100 km is between 10 and 15 kW h. According

FIGURE 12
Changes in network loss of EV with the same charging power
connected to the distribution network at different positions.

FIGURE 13
Diagram of EV with different capacities connected to the same
node.

TABLE 1 Parameter setting table.

Parameter Parameter value

Total number of cars/vehicle 4,500

Penetration rate of EV/% 15, 35, 55

Number of EV/vehicle 400, 1,200, 2,000

Battery capacity/k W · h 30

Upper limit of state of charge/% 100

Lower limit of state of charge/% 25

Charging power/k W 7

Charge efficiency 0.9

Power consumption per 100 km/k W · h 21

FIGURE 14
Basic load curve in winter and basic load curve in summer.
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to the ratio of fast and slow charging power, the unit average
charging power is calculated to be around 8.5 kW. Taking an
empirical value of 7.5 represents the conversion relationship
between electric vehicle mileage and power consumption, and
taking a unit charging power of 8.5 kW represents the conversion
relationship between electric vehicle charging quantity and charging
time. Monte Carlo simulation is used to extract the starting SOC of a
unit vehicle The flowchart of the calculationmethod for the charging
load of electric vehicles based on the initial charging time is shown in
Figure 5.

The input information of the system includes the total scale of
EV, the probability distribution of two types of charging behaviors,
the probability distribution of charging period and initial charging
time, and the probability distribution of initial SOC corresponding
to different types of charging behaviors.

When EVs leave, it is the time when they are fully charged, and
the charging demand of EVs is calculated. Calculate the total
charging time from this. When the total charging time is met,
reduce the sampling range at the starting time and randomly
sample the starting charging time according to a specific
probability distribution. Through Monte Carlo simulation, the
daily distance of EV, the required charging amount after daily
driving, the required charging time after daily driving, and the
starting time of charging are respectively shown in Figures 6–9.

The daily driving range of EV is below 50 km, and the required
charging capacity is also within 15 kWh. Charging often takes less
than 1 and a half hours, and most of it starts after returning to their
homes after commuting to work at night. It is mainly concentrated
between 18:00 and 22:00 in the evening, which is consistent with the
trend of residents’ basic load electricity consumption, and there is a
phenomenon of “peak to peak".

5 The impact of EV on the distribution
network

5.1 Impact on node voltage

Build an IEEE 33 distribution network simulation model to
analyze the impact of different penetration rates of EV and
different access locations on node voltage. The disorderly

connection of EV to different locations can lead to a serious
decrease in voltage at different nodes. Set the battery capacity
to 30 kW h when EV are connected to nodes 14, 17, 21, and 26.
Figure 10 shows the voltage deviation of the power grid after the
new energy vehicle charging station is connected. It can be seen
that the larger the distance from the power node, the greater the
voltage deviation of system. 17. The voltages of the 21 nodes are
0.921 and 0.927 pu respectively, which have fallen out of the
national safety range of ±7%, has a certain impact on the safety
and reliability of the distribution network.

Figure 11 shows the voltage diagram of IEEE33 node 17 for EV
with charging power of 15, 30, 45, and 60 kW respectively. It can be
seen that the higher the charging power of EV, the greater the voltage
deviation. When the charging power is 45 kW and 60kW, the
maximum voltage offset is 0.04 and 0.05 pu, respectively.

5.2 Impact on grid losses

Distribution network loss refers to the active power loss in the
network, which can be expressed as:

ΔP∑ � ∑n
k�1

P2
k + Q2

k

U2
k

Rk (16)

In the formula, Pk and Qk are the active and reactive power
flowing into the first section of the k-th branch; Uk is the amplitude
of the voltage at the head end of the k-th branch; Rk is the resistance
of the k-th branch.

Figure 12 shows the network losses of EV with the same
charging power connected to different nodes of the IEEE33 node
distribution network. The network losses of the four nodes are
significantly different, and when there is no new EV connected, the
network losses will further increase when the EV is connected. The
further away the new EV is connected from the power supply zero
point system, the more system network losses will be added.

After EV with different charging powers are connected to the
same IEEE33 node distribution network, the network loss of the
system will consume a portion of reactive power due to the presence
of transformers. Therefore, the power factor of the new energy
vehicle charging station is set to 0.95.

FIGURE 15
Basic load curve.

FIGURE 16
Superimposed load curves with basic load and permeability of
15%, 35%, and 55%, respectively.
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As shown in Figure 13, EVwith charging powers of 15, 30, 45, and
60 kW are connected to 17 nodes. The higher the charging power, the
more system network losses it increases. When the charging power is
45 kW and 60 kW, the highest network losses are 0.07 and 0.1 pu,
respectively, which occur from 20p.m. to 21p.m., which is also the
time when the basic load is the highest, seriously affecting the efficient
and stable operation of the distribution network.

5.3 Example reference

Taking private cars in a residential area of Tianjin as the research
object, the charging loads of electric vehicles were divided into winter
and summer for analysis. Set relevant parameters such as electric vehicle
charging mode, charging method, and charging power, and define the
penetration rate of electric vehicles as the percentage of the total number
of electric vehicles. There are a total of 4,500 vehicles in this area, and
when the penetration rate of electric vehicles is 15%, 35%, and 55%, the
corresponding number of electric vehicles is 400, 1,200, and 2,000,
respectively. Set other parameters as shown in Table 1.

The winter and summer basic load curves of this area are shown in
Figure 14. The data curve is sourced from the basic power load data of a
certain area in Tianjin on August 5th and 5 December 2022, where
August 5th represents summer and December 5th represents winter.

The basic load in this area is higher in winter than in summer.
Taking into account the basic loads in winter and summer, both
weights are set to 0.5, and the basic load data in the region is weighted
average to obtain the annual average basic load as shown in Figure 15.

According to the above data and model, set a time sampling point
every 1 h from 0:00, the Monte Carlo simulation method is used to
calculate the electricity load of EVs. The basic electricity load and
charging load of EVs in the distribution network are obtained. The
superimposed load data and curves of 15%, 35%, and 55% of the basic
electricity load and permeability are shown in the table and Figure 16.

From the analysis of Table 2; Figure 16, it can be concluded that the
peak charging load period of EV is mainly concentrated between 18:
00 and 1:00 p.m. in the evening. The number of centrally charged EVwith
penetration rates of 15%, 35%, and 55% all exceeds 80% of the total
number of EV. The peak period of basic load in the distribution network
usually also occurs around 19:00 to 22:00, which will lead to the
phenomenon of “peak to peak” superimposed load. As the penetration
rate continues to increase, the percentage of new energy vehicle charging
load in the superimposed load will continue to increase, and there may
even be situations where the charging load value exceeds the base load.

Due to the fact that the permeability of 15% is closest to the
actual situation, a permeability of 15% is used as the benchmark.
According to Table 2, when the penetration rate is 35%, the
maximum load of the distribution network increases by about

24%; When the penetration rate is 55%, the maximum load of
the distribution network increases by about 40%. The magnitude of
permeability determines the peak load of the distribution network
and is positively correlated. According to this law, when the
penetration rate increases to a certain extent, the power grid
equipment will experience serious overload problems.

6 Conclusion

This article uses Monte Carlo sampling algorithm to establish an
EVs charging load model. This model predicts the driving range,
charging duration, and load of EVs, and simulates the impact of
different penetration rates on the IEEE33 node distribution system.
The analysis results indicate that the charging power of EVs and the
nodes connected to the distribution network have a significant impact on
the loss and voltage drop of the power system. The wider the charging
behavior, the greater the charging load, and the greater the voltage drop
and power loss away from the source. The impact of charging load on the
distribution network was verified through numerical examples. The
results showed that the charging characteristics and power of EVs, when
superimposed on the basic electricity load of the distribution network,
are prone to the phenomenon of “peak to peak”, which seriously affects
the safety and stability of the distribution network.

The data on the load and power of the distribution system in this
article is influenced by actual charging scenarios. There is a situation
where EV use household basic electricity for charging. In response to
this situation, strengthening the orderly charging guidance for EVs
and reducing the load on the distribution network is the next
research direction.
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