23 research outputs found

    Ontology-based collection, representation and analysis of drug-associated neuropathy adverse events

    Get PDF
    Abstract Background Neuropathy often occurs following drug treatment such as chemotherapy. Severe instances of neuropathy can result in cessation of life-saving chemotherapy treatment. Results To support data representation and analysis of drug-associated neuropathy adverse events (AEs), we developed the Ontology of Drug Neuropathy Adverse Events (ODNAE). ODNAE extends the Ontology of Adverse Events (OAE). Our combinatorial approach identified 215 US FDA-licensed small molecule drugs that induce signs and symptoms of various types of neuropathy. ODNAE imports related drugs from the Drug Ontology (DrON) with their chemical ingredients defined in ChEBI. ODNAE includes 139 drug mechanisms of action from NDF-RT and 186 biological processes represented in the Gene Ontology (GO). In total ODNAE contains 1579 terms. Our analysis of the ODNAE knowledge base shows neuropathy-inducing drugs classified under specific molecular entity groups, especially carbon, pnictogen, chalcogen, and heterocyclic compounds. The carbon drug group includes 127 organic chemical drugs. Thirty nine receptor agonist and antagonist terms were identified, including 4 pairs (31 drugs) of agonists and antagonists that share targets (e.g., adrenergic receptor, dopamine, serotonin, and sex hormone receptor). Many drugs regulate neurological system processes (e.g., negative regulation of dopamine or serotonin uptake). SPARQL scripts were used to query the ODNAE ontology knowledge base. Conclusions ODNAE is an effective platform for building a drug-induced neuropathy knowledge base and for analyzing the underlying mechanisms of drug-induced neuropathy. The ODNAE-based methods used in this study can also be extended to the representation and study of other categories of adverse events.http://deepblue.lib.umich.edu/bitstream/2027.42/134596/1/13326_2016_Article_69.pd

    The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology

    Get PDF
    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl

    Economic development and coastal ecosystem change in China

    Get PDF
    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems

    c-Myc Regulates Self-Renewal in Bronchoalveolar Stem Cells

    Get PDF
    BACKGROUND: Bronchoalveolar stem cells (BASCs) located in the bronchoalveolar duct junction are thought to regenerate both bronchiolar and alveolar epithelium during homeostatic turnover and in response to injury. The mechanisms directing self-renewal in BASCs are poorly understood. METHODS: BASCs (Sca-1(+), CD34(+), CD31(-) and, CD45(-)) were isolated from adult mouse lung using FACS, and their capacity for self-renewal and differentiation were demonstrated by immunostaining. A transcription factor network of 53 genes required for pluripotency in embryonic stem cells was assessed in BASCs, Kras-initiated lung tumor tissue, and lung organogenesis by real-time PCR. c-Myc was knocked down in BASCs by infection with c-Myc shRNA lentivirus. Comprehensive miRNA and mRNA profiling for BASCs was performed, and significant miRNAs and mRNAs potentially regulated by c-Myc were identified. We explored a c-Myc regulatory network in BASCs using a number of statistical and computational approaches through two different strategies; 1) c-Myc/Max binding sites within individual gene promoters, and 2) miRNA-regulated target genes. RESULTS: c-Myc expression was upregulated in BASCs and downregulated over the time course of lung organogenesis in vivo. The depletion of c-Myc in BASCs resulted in decreased proliferation and cell death. Multiple mRNAs and miRNAs were dynamically regulated in c-Myc depleted BASCs. Among a total of 250 dynamically regulated genes in c-Myc depleted BASCs, 57 genes were identified as potential targets of miRNAs through miRBase and TargetScan-based computational mapping. A further 88 genes were identified as potential downstream targets through their c-Myc binding motif. CONCLUSION: c-Myc plays a critical role in maintaining the self-renewal capacity of lung bronchoalveolar stem cells through a combination of miRNA and transcription factor regulatory networks

    Bridging Vaccine Ontology and NCIt vaccine domain for cancer vaccine data integration and analysis

    No full text
    ABSTRACT The Vaccine Ontology (VO) is a community-based ontology in the domain of vaccines and vaccination. VO is aligned with the Basic Formal Ontology (BFO) and developed by following OBO Foundry principles. National Cancer Institute (NCI) Thesaurus (NCIt) serves as a reference ontology to facilitate interoperability and data sharing for cancer translational and basic research. To facilitate better cancer vaccine research, we compared the VO and NCIt vaccine domain (NCIt-vaccine) and examined the possibility of bridging and integrating these two ontologies. Our results showed that only a small portion of vaccine terms overlap between the two ontologies, and VO and NCIt-vaccine are complementary in different aspects. It is possible to integrate, map, and merge them. This study can be used as a use case for achieving the broader goal of merging and integrating NCIt and OBO library ontologies

    Wind Turbine Fault Detection Using a Denoising Autoencoder with Temporal Information

    No full text
    Data-driven approaches have gained increasing interests in the fault detection of wind turbines (WTs) due to the difficulty in system modeling and the availability of sensor data. However, the nonlinearity of WTs, uncertainty of disturbances and measurement noise, and temporal dependence in time-series data still pose grand challenges to effective fault detection. To this end, this paper proposes a new fault detector based on a recently developed unsupervised learning method, denoising autoencoder (DAE), which offers the learning of robust nonlinear representations from data against noise and input fluctuation. A DAE is used to build a robust multivariate reconstruction model on raw time-series data from multiple sensors, and then, the reconstruction error of the DAE trained with normal data is analyzed for fault detection. In addition, we apply the sliding-window technique to consider temporal information inherent in time-series data by including the current and past information within a small time window. A key advantage of the proposed approach is the ability to capture the nonlinear correlations among multiple sensor variables and the temporal dependence of each sensor variable simultaneously, which significantly enhanced the fault detection performance. Simulated data from a generic WT benchmark and field supervisory control and data acquisition data from a real wind farm are used to evaluate the proposed approach. The results of two case studies demonstrate the effectiveness and advantages of our proposed approach

    Stacked multilevel-denoising autoencoders: A new representation learning approach for wind turbine gearbox fault diagnosis

    No full text
    Currently, vibration analysis has been widely considered as an effective way to fulfill the fault diagnosis task of gearboxes in wind turbines (WTs). However, vibration signals are usually with abundant noise and characterized as nonlinearity and nonstationarity. Therefore, it is quite challenging to extract robust and useful fault features from complex vibration signals to achieve an accurate and reliable diagnosis. This paper proposes a novel feature representation learning approach, named stacked multilevel-denoising autoencoders (SMLDAEs), with the aim to learn robust and discriminative fault feature representations through a deep network architecture for diagnosis accuracy improvement. In our proposed approach, we design an MLD training scheme, which uses multiple noise levels to train AEs. It enables to learn more general and detailed fault feature patterns simultaneously at different scales from the complex frequency spectra of the raw vibration data, and therefore helps enhance the feature learning and fault diagnosis capability. Furthermore, SMLDAE-based fault diagnosis is performed with an unsupervised representation learning procedure followed by a supervised fine-tuning process with label information for classification. Our approach is evaluated by using the field vibration data collected from a self-designed WT gearbox test rig. The results show that our proposed approach learned more robust and discriminative fault feature representations and achieved the best diagnosis accuracy compared with the traditional approaches

    Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox

    No full text
    This paper proposes a novel intelligent fault diagnosis method to automatically identify different health conditions of wind turbine (WT) gearbox. Unlike traditional approaches, where feature extraction and classification are separately designed and performed, this paper aims to automatically learn effective fault features directly from raw vibration signals while classify the type of faults in a single framework, thus providing an end-to-end learning-based fault diagnosis system for WT gearbox without additional signal processing and diagnostic expertise. Considering the multiscale characteristics inherent in vibration signals of a gearbox, a new multiscale convolutional neural network (MSCNN) architecture is proposed to perform multiscale feature extraction and classification simultaneously. The proposed MSCNN incorporates multiscale learning into the traditional CNN architecture, which has two merits: 1) high-level fault features can be effectively learned by the hierarchical learning structure with multiple pairs of convolutional and pooling layers; and 2) multiscale learning scheme can capture complementary and rich diagnosis information at different scales. This greatly improves the feature learning ability and enables better diagnosis performance. The proposed MSCNN approach is evaluated through experiments on a WT gearbox test rig. Experimental results and comprehensive comparison analysis with respect to the traditional CNN and traditional multiscale feature extractors have demonstrated the superiority of the proposed method

    Wind Turbine Fault Detection Using a Denoising Autoencoder With Temporal Information

    No full text
    corecore