44 research outputs found

    Comparison of the effects of negative pressure wound therapy and negative pressure wound therapy with instillation on wound healing in a porcine model

    Get PDF
    BackgroundNegative pressure wound therapy with instillation (NPWTi) is a novel method based on standard negative pressure wound therapy (NPWT). This study aimed to compare the effects of standard NPWT and NPWTi on bioburden and wound healing in a Staphylococcus aureus (S.aureus) infected porcine model.MethodsGreen fluorescent protein-labeled S.aureus infected wounds were created on the back of porcine. Wounds were treated with NPWT or NPWT with instillation (saline). The tissue specimens were harvested on days 0 (12 h after bacterial inoculation), 2, 4, 6, and 8 at the center of wound beds. Viable bacterial counts, laser scanning confocal microscopy, PCR, western blot, and histological analysis were performed to assess virulence and wound healing.ResultsThe bacterial count in the NPWTi group was lower than that of the NPWT group and the difference was statistically significant on day 2, day 4, day 6, and day 8 (P < 0.05). The expression levels of agrA, Eap, Spa, and Hla genes of the NPWTi group were significantly lower than that of the NPWT group on day 8 (P < 0.05). The bacterial invasion depth of the NPWTi group was significantly lower than that of the NPWT group on day 2, day 4, day 6, and day 8 (P < 0.05). Though the NPWTi group showed a significantly increased expression of bFGF and VEGF than that of the NPWT group in the early time (P < 0.05), NPWTi cannot lead to better histologic parameters than the NPWT group (P > 0.05).ConclusionOur results demonstrated that NPWTi induced a better decrease in bacterial burden and virulence compared with standard NPWT. These advantages did not result in better histologic parameters on the porcine wound model

    PROTECTIVE ROLE OF XINNAONING TABLET IN ISCHEMIC STROKE IN RAT MODEL

    Get PDF
    Background: Stroke has been considered as the second leading cause of death worldwide. The survivors of stroke experience different level of impair brain function. In China, Chinese traditional medicine had been widely accepted for stroke therapy and prevention. In this study, we developed Traditional Chinese Medicine based Xinnaoning (peace of heart and brain) Tablet and tested its protective role for ischemic stroke in rat model. Material and Methods: Male Wistar rats (n=60) with 12 weeks old and weight from 180 to 200 gram were randomly divided to five groups (n=12). For the groups with Xinaoning administration, the drug was administrated to rats once per day for 7 consecutive days. The blood clotting time and the thrombus wet weight was measured. Serum samples were collected from each rat for further Measurement of biochemical indicators. Results: Our results demonstrated that Xinnaoning tablet reduced lactate acid (LD) level and increased lactic acid dehydrogenase (LDH) in cerebral ischemia model as well as reduced the infarct size caused by stroke. Besides, evaluation of the level of different ATPases suggested Xinnaoning tablet could modulate ATPases activity and confer a protective role in brain. Moreover, analysis indicated Xinnaoning tablet have the anti-coagulation effect in vivo which may contribute to the protection of ischemia. Conclusion: Our findings suggest that Xinnaoning tablet may be a potential way for cerebral ischemia prevention

    First-Principles Investigation of the Adsorption Behaviors of CH2O on BN, AlN, GaN, InN, BP, and P Monolayers

    No full text
    CH2O is a common toxic gas molecule that can cause asthma and dermatitis in humans. In this study the adsorption behaviors of the CH2O adsorbed on the boron nitride (BN), aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), boron phosphide (BP), and phosphorus (P) monolayers were investigated using the first-principles method, and potential materials that could be used for detecting CH2O were identified. The gas adsorption energies, charge transfers and electronic properties of the gas adsorption systems have been calculated to study the gas adsorption behaviors of CH2O on these single-layer materials. The electronic characteristics of these materials, except for the BP monolayer, were observed to change after CH2O adsorption. For CH2O on the BN, GaN, BP, and P surfaces, the gas adsorption behaviors were considered to follow a physical trend, whereas CH2O was chemically adsorbed on the AlN and InN monolayers. Given their large gas adsorption energies and high charge transfers, the AlN, GaN, and InN monolayers are potential materials for CH2O detection using the charge transfer mechanism

    A new method of online learning with kernels for regression

    No full text
    New optimization models and algorithms for online learning with kernels (OLK) in regression are proposed in a Reproducing Kernel Hilbert Space (RKHS) by solving a constrained optimization model. The “forgetting” factor in the model makes it possible that the memory requirement of the algorithm can be bounded as the learning process continues. The applications of the proposed OLK algorithms in classification and regression show their effectiveness in comparing with the state of art algorithms

    Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    No full text
    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson’s ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson’s ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson’s ratios at planes (100) and (111) are isotropic, while the Poisson’s ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol−1 K−1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band gap. Densities of states in the orbital hybridization between Ga and N atoms of wurtzite GaN are much higher, indicating more electrons participate in forming Ga-N ionic bonds in the wurtzite GaN

    Performance Study of Grass-Derived Nano-Cellulose and Polycaprolactone Composites for 3D Printing

    No full text
    In recent years, 3D printing has received increasing attention from researchers. This technology overcomes the limitations of traditional technologies by printing precise and personalized scaffold with arbitrary shapes, pore structures, and porosities for the applications in various tissues. The cellulose nanocrystal (CNC) is extracted from Humulus Japonicus (HJS) and mixed with poly(ε-caprolactone) (PCL) to prepare a series of CNC/PCL composites for printing. Based on the analysis of the physical and chemical properties of the series of the CNC/PCL composites, an optimal mass ratio of CNC to PCL was obtained. The Solidworks was used to simulate the stretching and compression process of the scaffolds with three different patterns under an external force. The flow of nutrient solution in the scaffolds with different patterns was simulated by ANSYS FLUENT, and then a new optimization scaffold pattern with a concave hexagon shape was advised based on the simulation results. Collectively, the mechanical test results of the material and scaffold confirmed that the optimal filling amount of the CNC was 5%, and the scaffold pattern with concave hexagon shape exhibited better mechanical properties and suitable for the transport of cells and nutrients, which is expected to be more widely used in 3D printing
    corecore