742 research outputs found

    ROLE OF ING2 (INHIBITOR OF GROWTH FAMILY MEMBER 2) IN CELLUAR RESPONSES TO DNA DAMAGE

    Get PDF
    Genome stability is essential for cells to survive. Consequently, cells have evolved intricate responses that include transcriptional changes, cell-cycle arrest, activation of DNA repair, and apoptosis. Such responses prevent permanent fixation of DNA damage induced by genotoxic agents into the genome, thus contributing to genome stability. A collection of proteins implicated in DNA damage responses are called Inhibition of Growth (ING) family, which are a group of small molecular weight proteins that regulate a variety of biological functions ranging from senescence, cell cycle arrest, apoptosis and DNA repair. ING proteins interact with Histone Acetyl-transferases (HAT) and Histone Deacetylases (HDAC) to alter the state of chromatin compaction and acetylation status of many proteins during DNA damage. A specific member of the ING family, ING2 has been implicated in modulating the tumor suppressor, p53 function through p300 HAT-mediated acetylation. Irradiation fails to upregulate ING2, but increases its association with transcription co-activator p300. That p300 HAT activation in the cells with ING2 knock down is hampered post-irradiation suggests that the interaction between ING2 and p300 is indispensable for the upregulation of the p300 HAT activity. Cells deficient in protein kinase Ataxia Telangiectasia Mutated (ATM) displays impaired p300 HAT activation and less association between p300 and ING2 following ionizing radiation, indicating that ATM function is also required. Alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) upregulates ING2 level in both time- and dose-dependent manner. We further observed that ING2 regulates the cell death response induced by this alkylator through a mechanism involving acetylation and stabilization of p73. Induction/acetylation of p53, in response to MNNG, however, proceeds in an ING2-independent manner. Inhibition of c-Abl by STI571 treatment blocked ING2 upregulation and p73 acetylation induced by MNNG. Similarly, MLH1- suppressed or mutated cells displayed defective ING2 upregulation and p73 acetylation in response to MNNG, which suggests that Mlh1- and c-Abl-dependent upregulation of ING2 activates the cell death response to MNNG through p73 acetylation.Taken together, these findings demonstrate that ING2 plays an important role in the cellular responses to different DNA damage by regulating the acetylation of tumor suppressors

    Sulfonated poly(arylene thioether phosphine oxide)s copolymers for proton exchange membrane fuel cells

    Get PDF
    Abstract High molecular weight sulfonated poly(arylene thioether phosphine oxide)s (sPATPO) with various sulfonation degrees were prepared directly by aromatic nucleophilic polycondensation of 4,4 -thiobisbenzenethiol with sulfonated bis(4-fluorophenyl) phenyl phosphine oxide and bis(4-fluorophenyl) phenyl phosphine oxide. sPATPO in the acid form with sulfonation degrees of 60-100% exhibits a glass transition temperature higher than 230 ‱ C and a 5% weight loss temperature above 400 ‱ C, indicating high thermal stability. sPATPO with a high sulfonation degree shows high proton conductivity and good resistance to swelling as well. For instance, sPATPO-70 displays the conductivity of 0.0783 S/cm and a swelling ratio of 11.6% at 90 ‱ C. TEM micrographs showed that sPATPO membranes with a high sulfonation degree could form continuous ion channels, which are favorable for improving the proton conductivity but harmful to remaining the mechanical property. The membranes are expected to show good performances in fuel cell applications

    Pretreatment technology of lignocellulose

    Get PDF
    Lignocellulose is the most abundant renewable biomass resource in nature. Pretreatment of lignocellulose can improve the accessibility of cellulase to cellulose raw materials, reduce the ineffective adsorption of cellulase, reduce the crystallinity and obtain higher reducing sugar. In this paper, several practical pretreatment technologies of lignocellulose are summarized, and the methods, principles, advantages and disadvantages of each pretreatment technology are summarized, and then the development prospect of lignocellulose pretreatment methods is prospected

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    Cloning, Characterization, and Functional Expression of Phospholipase D α

    Get PDF
    Phospholipase D (PLD) plays a key role in adaptive responses of postharvest fruits. A cDNA clone of banana (Musa acuminate L.) PLDα (MaPLDα) was obtained by RT-PCR in this study. The MaPLDα gene contains a complete open reading frame (ORF) encoding a 92-kDa protein composed of 832 amino acid residues and possesses a characteristic C2 domain and two catalytic H×K×××D (abbr. HKD) motifs. The two HKD motifs are separated by 341 amino acid residues in the primary structure. Relatively higher PLD activity and expression of MaPLDα mRNA were detected in developing tissues compared to senescent or mature tissues in individual leaves, flower, stem, and fruit organs, respectively. The expression profile of PLDα mRNA in postharvest banana fruits at different temperatures was determined, and the MaPLDα mRNA reached the highest expression peak on day 5 at 25°C and on day 7 at 12°C. The results provide useful information for maintaining postharvest quality and extending the storage life of banana fruit

    Acute myocardial infarction after inactivated COVID-19 vaccination: a case report and literature review

    Get PDF
    A number of vaccines have been developed and deployed globally to restrain the spreading of the coronavirus disease 2019 (COVID-19). The adverse effect following vaccination is an important consideration. Acute myocardial infarction (AMI) is a kind of rare adverse event after COVID-19 vaccination. Herein, we present a case of an 83-year-old male who suffered cold sweat ten minutes after the first inactivated COVID-19 vaccination and AMI one day later. The emergency coronary angiography showed coronary thrombosis and underlying stenosis in his coronary artery. Type II Kounis syndrome might be a potential mechanism, which is manifested as coronary thrombosis secondary to allergic reactions in patients with underlying asymptomatic coronary heart disease. We also summarize the reported AMI cases post COVID-19 vaccination, as well as overview and discuss the proposed mechanisms of AMI after COVID-19 vaccination, thus providing insights for clinicians to be aware of the possibility of AMI following COVID-19 vaccination and potential underlying mechanisms

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    • 

    corecore