33 research outputs found

    A recombinant avian antibody against VP2 of infectious bursal disease virus protects chicken from viral infection

    Get PDF
    【Abstract】A stable cell-line was established that expressed the recombinant avian antibody (rAb) against the infectious bursal disease virus (IBDV). rAb exhibited neutralization activity to IBDV-B87 strain in DF1 cells. The minimum rAb concentration required for inhibition of the cytopathic effect (CPE) was 1.563 μg/mL. To test the efficacy of rAb, a 168-h cohabitation challenge experiment was performed to transmit the disease from the chickens challenged with vvIBDV (HLJ0504 strain) to three test groups of chickens, i.e. (1) chickens treated with rAb, (2) chickens treated with yolk antibody, and (3) non-treatment chickens. The survival rates of chickens treated with rAb, yolk antibody and without treatment were 73%, 67% and 20%, respectively. Another batch of chickens was challenged with IBDV (BC6/85 strain) and then injected with rAb (1.0 mg/kg) 6, 24 and 36 h post-challenge. Non-treatment chickens had 100% morbidity, whereas those administered with rAb exhibited only 20% morbidity. Morbidity was evaluated using clinical indicators and bursal histopathological section. This study provides a new approach to treating IBDV and the rAb represents a promising candidate for this IBDV therapy.This research was supported by Heilongjiang province project of applied technology research and development (2013GC13C105) and The National Natural Science Fund biologic science base improve program of research training and capacity (J1210069/J0124)

    The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan

    Get PDF
    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell

    The diploid genome sequence of an Asian individual

    Get PDF
    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved

    Smartphone-based indoor map construction: principles and applications

    No full text

    Smartphone-Based Real Time Vehicle Tracking in Indoor Parking Structures

    No full text

    Heterogeneous Graph Structure Learning for Graph Neural Networks

    No full text
    Heterogeneous Graph Neural Networks (HGNNs) have drawn increasing attention in recent years and achieved outstanding performance in many tasks. The success of the existing HGNNs relies on one fundamental assumption, i.e., the original heterogeneous graph structure is reliable. However, this assumption is usually unrealistic, since the heterogeneous graph in reality is inevitably noisy or incomplete. Therefore, it is vital to learn the heterogeneous graph structure for HGNNs rather than rely only on the raw graph structure. In light of this, we make the first attempt towards learning an optimal heterogeneous graph structure for HGNNs and propose a novel framework HGSL, which jointly performs Heterogeneous Graph Structure Learning and GNN parameters learning for classification task. Different from traditional GSL on homogeneous graph, considering the heterogeneity of different relations in heterogeneous graph, HGSL generates each relation subgraph independently. Specifically, in each generated relation subgraph, HGSL not only considers the feature similarity by generating feature similarity graph, but also considers the complex heterogeneous interactions in features and semantics by generating feature propagation graph and semantic graph. Then, these graphs are fused to a learned heterogeneous graph and optimized together with a GNN towards classification objective. Extensive experiments on real-world graphs demonstrate that the proposed framework significantly outperforms the state-of-the-art methods

    VeLoc

    No full text
    We present VeLoc, a smartphone-based vehicle localization approach that tracks the vehicle's parking location without GPS or WiFi signals. It uses only the embedded accelerometer and gyroscope sensors. VeLoc harnesses constraints imposed by the map and landmarks (e.g., speed bumps) recognized from inertial data, employs a Bayesian filtering framework to estimate the location of the vehicle. We have conducted experiments in three parking structures of different sizes and configurations, using three vehicles and three kinds of driving styles. We find that VeLoc can always localize the vehicle within 10m, which is sufficient for the driver to trigger a honk using the car key. Copyright 2014 ACM.EI

    Ultra-High-Sensitivity, Miniaturized Fabry-Perot Interferometric Fiber-Optic Microphone for Weak Acoustic Signals Detection

    No full text
    An ultra-high-sensitivity, miniaturized Fabry-Perot interferometric (FPI) fiber-optic microphone (FOM) has been developed, utilizing a silicon cantilever as an acoustic transducer. The volumes of the cavity and the FOM are determined to be 60 microliters and 102 cubic millimeters, respectively. The FOM has acoustic pressure sensitivities of 1506 nm/Pa at 2500 Hz and 26,773 nm/Pa at 3233 Hz. The minimum detectable pressure (MDP) and signal-to-noise ratio (SNR) of the designed FOM are 0.93 μPa/Hz1/2 and 70.14 dB, respectively, at an acoustic pressure of 0.003 Pa. The designed FOM has the characteristics of ultra-high sensitivity, low MDP, and small size, which makes it suitable for the detection of weak acoustic signals, especially in the field of miniaturized all-optical photoacoustic spectroscopy

    Effects of selected ionic liquids on lipid production by the oleaginous yeast Rhodosporidium toruloides

    No full text
    Lignocellulosic biomass pretreatment with ionic liquids (ILs) has been emerged as a new technology, but the effects of residual Us on the downstream biotransformation remain largely unknown. Here, three typical ILs were tested for their effects on lipid production by the oleaginous yeast Rhodosporidium toruloides AS 2.1389. When cultures were maintained at pH 6.0 in the presence of 30 mM ILs, [Emirn]Cl, [Emirn][DEPI, or [Emim][OAc], minor inhibition effects were observed. When cultures were performed in the presence of 60 mM ILs or without pH control, inhibition was largely dependent on ILs. Detailed analysis indicated that the anion of [Emim][OAc] was assimilated, leading to a rapid alkaline-pH shift and enhanced inhibition on cell growth and lipid production. Our results demonstrated that R. toruloides is a robust lipid producer tolerating Ws at low concentrations, and that care should be taken in bioprocess control and data analysis when Ws are involved. (C) 2012 Elsevier Ltd. All rights reserved
    corecore