300 research outputs found

    Influences of different degassing processes on refining effect and properties of 4004 Al alloy

    Get PDF
    In order to improve the plasticity of 4004 Al alloy and subsequently the productivity of 4004 Al foil, the research studied in detail the influence of the rotary impeller degassing process on the refining effect of 4004 Al alloy, in which the impacts of four major parameters: gas flow, rotational speed, refining time, and stewing time, on degassing rate of 4004 Al alloy was systematically studied by using an orthogonal experiment methodology. Results show that the rotational speed has the greatest impact on the degassing of 4004 Al alloy, followed by gas flow and refining time; stewing time has the least impact. The optimum purification parameters obtained by current orthogonal analysis were: rotor speed of 500 r¡min-1, inert gas flow of 0.4 mL¡h-1, refining time of 15 min, and stewing time of 6 min. Degassing rate using the optimum parameters reaches 68%. In addition, the comparison experiments among C2Cl6 refining, rotary impeller degassing, and combined treatment of C2Cl6 refining and rotary impeller degassing for 4004 Al alloy were performed. The experimental data indicated that the combined treatment of C2Cl6 refining and rotary impeller degassing has the best degassing effect. Degassing rate of C2Cl6 refining, rotary impeller degassing and combined refining treatment is 39%, 69.1% and 76.9%, respectively. The mechanical properties of the specimen refined by rotary impeller degassing were higher than those by C2Cl6 refining, but lower than those by combined refining treatment

    Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Get PDF
    AbstractThe initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass–matrix composite (MGMC) were investigated by using an in-situ tensile test under transmission electron microscopy (TEM). It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite

    Development of Low-Threshold Detectors for Low-Mass Dark Matter Searches Using an N-Type Germanium Detector at 5.2 K

    Full text link
    We investigated charge transport in an n-type germanium detector at 5.2 K to explore new technology for enhancing low-mass dark matter detection sensitivity. Calculations of dipole and cluster dipole state binding energies and electric field-dependent trapping cross-sections are critical to developing low-threshold detectors. The detector operates in two modes: depleting at 77K before cooling, or directly cooling to 5.2 K and applying different bias voltages. Results indicated lower binding energy of charge states in the second mode, at zero field and under an electric field, suggesting different charge states formed under different operating modes. Measured cluster dipole and dipole state binding energies at zero field were 7.884Âą\pm0.644 meV and 8.369Âą\pm0.748 meV, respectively, signifying high low-threshold potential for low-mass dark matter searches in the future.Comment: 7 pages, 8 figure

    Development of low-threshold detectors for low-mass dark matter searches with a p-type germanium detector operated at cryogenic temperature

    Full text link
    This study investigates new technology for enhancing the sensitivity of low-mass dark matter detection by analyzing charge transport in a p-type germanium detector at 5.2 K. To achieve low-threshold detectors, precise calculations of the binding energies of dipole and cluster dipole states, as well as the cross-sections of trapping affected by the electric field, are essential. The detector was operated in two modes: depleted at 77 K before cooling to 5.2 K and cooled directly to 5.2 K with various bias voltages. Our results indicate that the second mode produces lower binding energies and suggests different charge states under varying operating modes. Notably, our measurements of the dipole and cluster dipole state binding energies at zero fields were 8.716Âą0.4358.716\pm 0.435 meV and 6.138Âą0.3086.138\pm 0.308 meV, respectively. These findings have strong implications for the development of low-threshold detectors for detecting low-mass dark matter in the future.Comment: 7 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:2302.0841

    Beneficial Evaluation of Residential Dual Water Supply System

    Get PDF
    The scientific development and utilization of regional unconventional water resources and the implementation of high-quality water supply at the county level is beneficial both in the water resources allocation and the water shortage alleviation. It is also important in improving the human society as well as protecting the ecological environment, which shows significant economic, social and environmental benefits. The beneficial evaluation analysis of the development and utilization of regional unconventional water resources and the potential of dual water supply are conducted in this study. The reasonable beneficial evaluation of the utilization of unconventional water resources and regional dual water supply system are of great significance to the regional effective water sources allocation and water supply method

    Predictive Sliding Mode Control for Attitude Tracking of Hypersonic Vehicles Using Fuzzy Disturbance Observer

    Get PDF
    We propose a predictive sliding mode control (PSMC) scheme for attitude control of hypersonic vehicle (HV) with system uncertainties and external disturbances based on an improved fuzzy disturbance observer (IFDO). First, for a class of uncertain affine nonlinear systems with system uncertainties and external disturbances, we propose a predictive sliding mode control based on fuzzy disturbance observer (FDO-PSMC), which is used to estimate the composite disturbances containing system uncertainties and external disturbances. Afterward, to enhance the composite disturbances rejection performance, an improved FDO-PSMC (IFDO-PSMC) is proposed by incorporating a hyperbolic tangent function with FDO to compensate for the approximate error of FDO. Finally, considering the actuator dynamics, the proposed IFDO-PSMC is applied to attitude control system design for HV to track the guidance commands with high precision and strong robustness. Simulation results demonstrate the effectiveness and robustness of the proposed attitude control scheme

    Prevalence of the GJB2 IVS1+1G >A mutation in Chinese hearing loss patients with monoallelic pathogenic mutation in the coding region of GJB2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the GJB2 gene are the most common cause of nonsyndromic recessive hearing loss in China. In about 6% of Chinese patients with severe to profound sensorineural hearing impairment, only monoallelic <it>GJB2 </it>mutations known to be either recessive or of unclear pathogenicity have been identified. This paper reports the prevalence of the <it>GJB2 </it>IVS1+1G>A mutation in a population of Chinese hearing loss patients with monoallelic pathogenic mutation in the coding region of <it>GJB2</it>.</p> <p>Methods</p> <p>Two hundred and twelve patients, screened from 7133 cases of nonsyndromic hearing loss in China, with monoallelic mutation (mainly frameshift and nonsense mutation) in the coding region of <it>GJB2 </it>were examined for the <it>GJB2 </it>IVS1+1G>A mutation and mutations in the promoter region of this gene. Two hundred and sixty-two nonsyndromic hearing loss patients without <it>GJB2 </it>mutation and 105 controls with normal hearing were also tested for the <it>GJB2 </it>IVS1+1G>A mutation by sequencing.</p> <p>Results</p> <p>Four patients with monoallelic mutation in the coding region of <it>GJB2 </it>were found carrying the <it>GJB2 </it>IVS1+1G>A mutation on the opposite allele. One patient with the <it>GJB2 </it>c.235delC mutation carried one variant, -3175 C>T, in exon 1 of <it>GJB2</it>. Neither <it>GJB2 </it>IVS1+1G>A mutation nor any variant in exon 1 of <it>GJB2 </it>was found in the 262 nonsyndromic hearing loss patients without <it>GJB2 </it>mutation or in the 105 normal hearing controls.</p> <p>Conclusion</p> <p>Testing for the <it>GJB2 </it>IVS 1+1 G to A mutation explained deafness in 1.89% of Chinese <it>GJB2 </it>monoallelic patients, and it should be included in routine testing of patients with <it>GJB2 </it>monoallelic pathogenic mutation.</p

    Evolution Feature Oriented Model Driven Product Line Engineering Approach for Synergistic and Dynamic Service Evolution in Clouds

    Get PDF
    The proposed research will focus on developing a novel approach to solve Software Service Evolution problems in Computing Clouds. The approach will support dynamic evolution of the software service in clouds via a set of discovered evolution patterns. An initial survey informed us that such an approach does not exist yet and is in urgent need. Evolution Requirement can be classified into evolution features; researchers can describe the whole requirement by using evolution feature typology, the typology will define the relation and dependency between each features. After the evolution feature typology has been constructed, evolution model will be created to make the evolution more specific. Aspect oriented approach can be used for enhance evolution feature-model modularity. Aspect template code generation technique will be used for model transformation in the end. Product Line Engineering contains all the essential components for driving the whole evolution process
    • …
    corecore