94 research outputs found

    Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis

    Get PDF
    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea–induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea–induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction

    Birnessites with different average manganese oxidation states synthesized, characterized, and transformed to todorokite at atmospheric pressure

    No full text
    Todorokite is a common manganese oxide mineral, with a tunnel structure, found in Earth surface environments, and is easily synthesized from layered birnessite. The aim of the current study was to prepare birnessites with different average manganese oxidation states (AOS) by controlling the MnO /Mn ratio in concentrated NaOH or KOH. A series of (Na,K)-birnessites, Na-birnessites, and K-birnessites with different AOS was synthesized successfully in strongly alkaline media. The (Na,K)-birnessites and Na-birnessites prepared in NaOH clearly contained both large (500-1000 nm) and small (40-400 nm), plate-shaped crystallites. The K-birnessites prepared in KOH media consisted mostly of irregular (100-200 nm), plate-shaped crystallites. The degree of transformation of birnessite to todorokite at atmospheric pressure decreased as the AOS values of (Na,K)-birnessites and Na-birnessites increased from 3.51 to 3.80. No todorokite was present when a Na-birnessite with an AOS value of 3.87 was used as the precursor. Pyrophosphate, which is known to form strong complexes with Mn at a pH range of 1-8, was added to a suspension of (Na,K)-birnessites in order to sequester the available Mn in (Na,K)-birnessites. Removal of Mn from birnessite MnO layers by pyrophosphate restricted transformation to todorokite no-(Na,K)-birnessite transformed to todorokite after pyrophosphate treatment. The interlayer K initially within (Na,K)-birnessites could not be completely ion-exchanged with Mg to form todorokite at atmospheric pressure. No todorokite was forthcoming from K-birnessites even from those with small AOS values (3.50)

    Pavement Properties and Predictive Durability Analysis of Asphalt Mixtures

    No full text
    The actual lifetimes of many highways are lower than that expected based on the initial pavement design, which brings increasingly prohibitive costs of pavement maintenance and repair. Although many works have been done, the real service lifetimes are still disappointing, and the researchers are also trying their best to increase the projects’ life span. In this study, to comprehensively predict the durability and lifetime of newly designed asphalt mixture structures, an asphalt pavement project consisting of three hot mix asphalt (HMA) mixtures were evaluated. The mixtures were constructed in the pavement project of the Weiwu expressway in Gansu Province. Pavement properties of the asphalt mixtures, rutting and temperature fatigue factors of the dynamic modulus are discussed. The fatigue resistance is supposed to improve on increasing the vehicles’ speed below the freezing point, which may be more suitable for applications in expressways. Meanwhile, the lifetime is measured according to the number of fatigue axle loads calculated, which were corrected between the specimens in the lab and the field core samples. Durability analysis prediction can be obtained based on the fatigue lifetime predictive model accordingly, which can provide more information about the fatigue lifetime and the rehabilitation planning of existing pavements in the future accordingly

    Circular RNA and mRNA profiling reveal competing endogenous RNA networks during avian leukosis virus, subgroup J-induced tumorigenesis in chickens.

    No full text
    Avian leukosis virus subgroup J (ALV-J) can induce myeloid tumors and hemangiomas in chickens and causes severe economic losses with commercial layer chickens and meat-type chickens. Here, we generated ribominus RNA sequencing data from three normal chicken spleen tissues and three ALV-J-infected chicken spleen tissues. Structure analysis of transcripts showed that, compared to mRNAs and lncRNAs, chicken circRNAs shared relatively shorter transcripts and similar GC content. Differentially expression analysis showed 152 differentially expressed circRNAs with 106 circRNAs up regulated and 46 circRNAs down regulated. Through comparing differentially expressed circRNA host genes and mRNAs and performed ceRNA network analysis, we found several tumor or immune-related genes, in which, there were four genes existed in both differentially expressed mRNAs and circRNA host genes (Dock4, Fmr1, Zfhx3, Ralb) and two genes (Mll, Aoc3) involved in ceRNA network. We further characterized one exon-intron circRNA derived from HRH4 gene in the ceRNA network, termed circHRH4, which is an abundant and stable circRNA expressed in various tissues and cells in chicken and localizes in cytoplasm. Our results provide new insight into the pathology of ALV-J infection and circRNAs may also mediate tumorigenesis in chicken

    Thermal Welding by the Third Phase Between Polymers: A Review for Ultrasonic Weld Technology Developments

    No full text
    Ultrasonic welding (USW) is a promising method for the welds between dissimilar materials. Ultrasonic thermal welding by the third phase (TWTP) method was proposed in combination with the formation of a third phase, which was confirmed as an effective technology for polymer welding between the two dissimilar materials compared with the traditional USW. This review focused on the advances of applying the ultrasonic TWTP for thermoplastic materials. The research development on the ultrasonic TWTP of polycarbonate (PC) and polymethyl methacrylate (PMMA), polylactic acid (PLA) and polyformaldehyde (POM), and PLA and PMMA are summarized according to the preparation of the third phase, welded strength, morphologies of rupture surfaces, thermal stability, and others. The review aimed at providing guidance for using ultrasonic TWTP in polymers and a basic understanding of the welding mechanism, i.e., interdiffusion and molecular motion mechanisms between the phases

    Comprehensive Transcriptome Analysis Reveals Competing Endogenous RNA Networks During Avian Leukosis Virus, Subgroup J-Induced Tumorigenesis in Chickens

    No full text
    Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that induces myeloid tumors and hemangiomas in chickens and causes severe economic losses with commercial layer chickens and meat-type chickens. High-throughput sequencing followed by quantitative real-time polymerase chain reaction and bioinformatics analyses were performed to advance the understanding of regulatory networks associated with differentially expressed non-coding RNAs and mRNAs that facilitate ALV-J infection. We examined the expression of mRNAs, long non-coding RNAs (lncRNAs), and miRNAs in the spleens of 20-week-old chickens infected with ALV-J and uninfected chickens. We found that 1723 mRNAs, 7,883 lncRNAs and 13 miRNAs in the spleen were differentially expressed between the uninfected and infected groups (P < 0.05). Transcriptome analysis showed that, compared to mRNA, chicken lncRNAs shared relatively fewer exon numbers and shorter transcripts. Through competing endogenous RNA and co-expression network analyses, we identified several tumor-associated or immune-related genes and lncRNAs. Along transcripts whose expression levels significantly decreased in both ALV-J infected spleen and tumor tissues, BCL11B showed the greatest change. These results suggest that BCL11B may be mechanistically involved in tumorigenesis in chicken and neoplastic diseases, may be related to immune response, and potentially be novel biomarker for ALV-J infection. Our results provide new insight into the pathology of ALV-J infection and high-quality transcriptome resource for in-depth study of epigenetic influences on disease resistance and immune system
    • …
    corecore