149 research outputs found

    Output feedback control of nonlinear systems with uncertain ISS/iISS supply rates and noises

    Get PDF
    This paper considers the problem of global output feedback control for a class of nonlinear systems with inverse dynamics. The main contribution of paper is that: For the inverse dynamics with uncertain ISS/iISS supply rates, and the systems being disturbed by L2 noises, we construct a reduced-order observer-based output feedback controller, which drives the output of system to zero and maintain other closed-loop signals bounded. Finally, a simulation example shows the effectiveness of the control scheme

    Biogeography-based learning particle swarm optimization

    Get PDF

    Investigation on the effects of Bragg reflection on harbor oscillations

    Get PDF
    Periodic undulating topographies (such as sandwaves and sandbars) are very common in coastal and estuarine areas. Normally incident water surface waves propagating from open sea to coastal areas may interact strongly with such topographies. The wave reflection by the periodic undulating topography can be significantly amplified when the surface wavelength is approximately twice the wavelength of the bottom undulations, which is often called as Bragg resonant reflection. Although the investigations on the hydrodynamic characteristics related to Bragg reflection of a region of undulating topography have been widely implemented, the effects of Bragg reflection on harbors have not yet been studied. Bragg resonant reflection can effectively reduce the incident waves. Meanwhile, however, it can also significantly hinder the wave radiation from the harbor entrance to the open sea. Whether Bragg reflection can be utilized as a potential measure to alleviate harbor oscillations is unknown. In the present study, Bragg reflection and their interactions with the harbor are simulated using a fully nonlinear Boussinesq model, FUNWAVE 2.0. For the purpose, an elongated harbor with constant depth is considered, and a series of sinusoidal bars with various amplitudes and numbers are deployed outside the harbor. The incident waves considered in this paper include regular long waves and bichromatic short wave groups. It is revealed for the first time that for both kinds of incident waves, Bragg resonant reflection can significantly alleviate harbor resonance. The influences of the number and the amplitude of sinusoidal bars on the mitigation effect of harbor resonance and on the optimal wavelength of sinusoidal bars that can achieve the best mitigation effect are comprehensively investigated, and it is found that the former two factors have remarkable influences on the latter two parameters. The present research provides a new option for the mitigation of harbor oscillations via changing the bottom profile, which is feasible as long as the navigating depth is guaranteed.</p

    Band selection in Sentinel-2 satellite for agriculture applications

    Get PDF
    Various indices are used for assessing vegetation and soil properties in satellite remote sensing applications. Some indices, such as NDVI and NDWI, are defined based on the sensitivity and significance of specific bands. Nowadays, remote sensing capability with a good number of bands and high spatial resolution is available. Instead of classification based on indices, this paper explores direct classification using selected bands. Recently launched Sentinel-2A is adopted as a case study. Three methods are compared, where the first approach utilizes traditional indices and the latter two approaches adopt specific bands (Red, NIR, and SWIR) and full bands of on-board sensors, respectively. It is shown that a better classification performance can be achieved by directly using the three selected bands compared with the one using indices, while the use of all 13 bands can further improve the performance. Therefore, it is recommended the new approach can be applied for Sentinel-2A image analysis and other wide applications

    Learning-based real-time imaging through dynamic scattering media

    Get PDF
    Imaging through dynamic scattering media is one of the most challenging yet fascinating problems in optics, with applications spanning from biological detection to remote sensing. In this study, we propose a comprehensive learning-based technique that facilitates real-time, non-invasive, incoherent imaging of real-world objects through dense and dynamic scattering media. We conduct extensive experiments, demonstrating the capability of our technique to see through turbid water and natural fog. The experimental results indicate that the proposed technique surpasses existing approaches in numerous aspects and holds significant potential for imaging applications across a broad spectrum of disciplines

    Design and Analysis of Linear Fault-Tolerant Permanent-Magnet Vernier Machines

    Get PDF
    corecore