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Abstract
Imaging through dynamic scattering media is one of the most challenging yet fascinating problems in optics, with
applications spanning from biological detection to remote sensing. In this study, we propose a comprehensive
learning-based technique that facilitates real-time, non-invasive, incoherent imaging of real-world objects through
dense and dynamic scattering media. We conduct extensive experiments, demonstrating the capability of our
technique to see through turbid water and natural fog. The experimental results indicate that the proposed technique
surpasses existing approaches in numerous aspects and holds significant potential for imaging applications across a
broad spectrum of disciplines.

Introduction
Classical image formation theory relies on a fundamental

assumption: the spatial-spectral information carried by light
is not excessively distorted as it propagates all the way from
the object to the imaging system1. Otherwise, the captured
image can be severely degraded owing to the presence of
scattering noise, which manifests as speckle grains under
coherent light illumination or leads in a reduction in image
contrast under incoherent light illumination2. Imaging
through scattering media, such as biological tissues, haze,
fog, and turbid water, is scientifically and technically
important, yet it poses a considerable challenge. That
challenge has long been recognized as one of the long-
standing problems in the field of optical imaging.
Traditional methods for addressing this issue typically

aim to either isolate the early-arriving light components
from the later-arriving, multiply-scattered ones3–10 or to
improve the signal-to-noise ratio. In terms of selection
techniques, groundbreaking research has led to the creation
of gating methods that capitalize on the Kerr effect in
nonlinear media4–8, as well as the coherence9 and polar-
ization10 characteristics inherent to the light. For enhancing

the early-arriving light, one strategy is to employ an illu-
mination source that is well-suited to the scattering prop-
erties of the medium, particularly if these properties are
spectrum-dependent11. Conversely, to mitigate the noise
from multiple scattering, one could exploit the absorptive
properties of the medium12 or implement spatial filtering
within a 4f system13. Nonetheless, since the ballistic light
decays exponentially with the optical thickness of the
scattering medium4,13, techniques that depend on it are
inherently limited in their capacity for image quality
restoration and depth penetration.
Computational techniques can leverage the perfor-

mance of imaging through scattering media by utilizing
not only the early-arriving light but also part of the late-
arriving scattered light14–33. Among these techniques,
deep learning(DL) has garnered increasing inter-
est24–26,29–33 due to its capacity of addressing challenging
inverse problems34. As a class of data-driven algorithms,
the performance of DL is heavily dependent on the quality
of the training dataset35. Although there are physics-
enhanced neural networks (PhysenNet) that do not
require training data and instead rely on the physical
principle of the forward model36–40, general forward
physical models are often too complex to formulate41 for
imaging through scattering media, with exception of the
simpler cases involving thin scattering layers30.
However, existing studies in this area are more con-

ceptual than practical. There are at least two reasons for
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this. The first pertains to the nature of the scattering
media: Existing studies have been conducted in artificial
scattering media such as ground glasses24,25,30,31,33, poly-
styrene slabs26, or fat emulsion suspension29,32. These
media are either homogeneous on a macroscopic scale or
at least quasi-static during the acquisition process. In
contrast, practical applications involving scattering media
like fog, turbid water, and in situ biological tissues exhibit
significant different properties: they are non-static and
inhomogeneous2. This discrepancy results in a challen-
ging situation where each pair of data in the training set -
the acquired scattered patterns and the corresponding
ground truth images – may be associated with a distinct
transmission matrix42 under coherent light illumination.
A deep neural network (DNN) trained on such an
inconsistent dataset may fail to converge to a model that
accurately maps the labels.
This issue also feeds into the second concern, which is

the creation and acquisition of the training dataset. In
existing studies, ground truth images have been sourced
from public datasets like MNIST26, CIFAR, and Ima-
geNet43. For demonstrations, these images were typically
displayed on a spatial light modulator (SLM) or a digital
micromirror device (DMD). In order to optically acquire
the ground truth images, these devices were illuminated
by collimated, coherent light from the object side,
bypassing the scattering medium24–26,29,31–33. This
implies an invasive operation, which is impractical since,
in such cases, one could directly image the objects hidden
inside or behind the scattering medium. Furthermore,
using SLM/DMD for this application presents another
issue: their reflectance characteristics differ significantly
from those of real-world objects. As a result, the ground
truth images captured in this manner may not accurately
reflect the optical properties of the real-world scenes.
Here, we propose a comprehensive learning-based

method named DescatterNet for incoherent imaging
through non-static and inhomogeneous scattering media.
The most significant advantage that set DescatterNet
apart from other existing learning-based methods, such as
HNN26, MulScaleCNN29, Unet44, AttentionUNet45, and
SwinIR46, is its ability to handle natural and complex
scenes effectively. We demonstrate the effectiveness of the
proposed DescatterNet through extensive experiments
conducted both indoors and outdoors. The results show
that DescatterNet achieves outstanding performance
when compared to traditional image enhancement
methods47–51, particular in terms of reconstructed image
quality, inference speed, and memory consumption.

Results
The overview of our DescatterNet is illustrated in Fig. 1.

We address three critical challenges: acquiring “real”
scattering datasets, ensuring generalization to previously

unseen real-world objects (including outdoor scenes), and
identifying the optimal neural network architecture. Initi-
ally, we collected thousands of “real” scattered-clear image
pairs under various scattering conditions using our custom
experimental setup [Fig. 1a]. Subsequently, to enhance the
generalization of our model to real-world objects and
outdoor scenes that are not encountered during training,
we propose a preprocessing method to bridge the domain
gap between across different scattering conditions [Fig. 1b].
Lastly, we conducted a thorough exploration of the
superior neural network by optimizing the network
architecture and comparing it with several alternatives
detailed in Fig. 1c and Table 1. For in-depth explanation,
please refer to the Methods and Materials section.

Recovery of previously unseen real-world objects
s shown in Fig. 1b, we trained our DescatterNet on the

dataset in which the ground truth images were displayed
on an e-ink display. We demonstrate that the trained
DescatterNet can be directly applied to recover previously
unseen real-world objects from the corresponding raw
images (i.e., the scattered patterns) captured through the
same scattering medium.
In this experiment, the scattering medium was the tank of

fat emulsion with an optical thickness of 5.51 as measured26.
In such a highly scattering environment, the raw images
exhibit extremely low contrast, obscuring all visual infor-
mation within the scattered light [Fig. 1c(i)]. Traditional
image contrast enhancement algorithms, such as dark
channel prior (DCP)47and Retinex49, were used to restore the
images, with the results displayed in Fig. 1c(ii) and Fig. 1c(iii),
respectively. One can see that the images reconstructed by
conventional algorithms like DCP and Retinex are noisy, with
associated peak signal-to-noise ratio (PSNR) values of less
than 10 dB. In contrast, the proposed DescatterNet sig-
nificantly outperforms the other methods [Fig. 1c(v)].
For a visual impression, we zoom in on the central

region of the raw image of the USAF resolution chart and
the same regions of the images reconstructed by the four
methods. Obviously, the dark channel prior algorithm
performs the poorest because it depends on the shadow
cast on the raw images47. Noise also evident in the image
reconstructed by the Retinex algorithm, as it relies on the
estimation and subsequent subtraction of the illumination
pattern51, which is randomly distributed in our scenario.
The images reconstructed by MulScaleCNN29 and the
proposed DescatterNet are of much higher quality, both
in terms of PSNR and Correlation Coefficient (Corr) with
respect to the ground truth, as shown in Fig. 1c(vi). It is
clear that the images reconstructed by DescatterNet
retain more structural details, especially in high-
resolution regions (highlighted with a red box) com-
pared to the those reconstructed by MulScaleCNN29. The
loss of high-resolution information in the image
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reconstructed by MulScaleCNN is paimarily attributed to
its network structure that the downsampling deconvolu-
tion layers are placed upstream of the feature extraction
branches.

Upper limit of descattering performance
Now we proceed to assess the performance of the

proposed DescatterNet with respect to the optical thick-
ness of the scattering medium, which, in our indoor
laboratory experiment, can be controlled by volume V of
fat emulsion dropped in the tank of water.

For this analysis, we collected a set of ground truth
images (presented on the e-ink display) and their corre-
sponding scattered patterns (raw images). We randomly
selected five distinct scattering strengths for our study,
corresponding to different volumes of fat emulsion
(V= 1.8ml, 2.4 ml, 2.8ml, 3.2ml, and 3.6ml, respectively).
Then we trained five distinct DNN models with identical
architectures on these five datasets, and used them to
reconstruct images from the captured raw images.
As shown in Fig. 2, the representative images demon-

strate that the objects can be clearly reconstructed when
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Fig. 1 Overview of the DescatterNet. a Indoor experimental setup for capturing the dataset to train and test the proposed method. b Flowchart of
the training and testing processes. c Representative experimental results. (i) The raw image, and the images reconstructed by (ii) the dark channel
prior algorithm, (iii) the Retinex-based algorithm, (iv) MulScaleCNN, and (v) the proposed DescatterNet. vi The ground truth images for comparison
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the volume V is low. The reconstructed images gradually
become distorted and noisy as the scattering strength of
the medium increases. The images eventually become
entirely corrupted when V falls between 2.8 ml and 3.2 ml,
which we surmise to be the upper limit for the effec-
tiveness of our proposed method.
Regrettably, we have not yet determined the precise

critical value of V. There are two main reasons for this.
Firstly, the precise knowledge of the critical value does not
significantly influence the understanding or application of
the proposed DescatterNet. In essence, this is not the

physical limitation but rather an engineering constraint of
the proposed method. We anticipate that the limit can be
improved by employing a superior camera with higher
dynamic range, lower noise level, larger quantum effi-
ciency, optimizing the network structure, or utilizing a
powerful illumination light source. Secondly, the pro-
posed DescatterNet fundamentally relies on the utiliza-
tion of the early-arriving light, which are typically
overwhelming by much stronger multiple scattered light.
Should one be able to devise an acquisition technique that
can separate these light components and develop a

Table 1 Performance comparison of 6 neural network architectures in terms of Npara (model size), FLOPs (computational
complexity), FPS (inference speed) and Corr and PSNR (image quality)

Index Method Npara FLOPs FPS(RTX3090) Corr PSNR

1 DescatterNet 1.94 M 10.59 G 338.62 0.8488 18.00

2 HNN26 1433.12 M 16.86 G 38.60 0.6946 15.25

3 MulScaleCNN29 1.41 M 6.38 G 80.43 0.8492 17.93

4 Unet44 31.04 M 167.51 G 65.02 0.8432 17.80

5 AttentionUNet45 34.88 M 203.83 G 49.95 0.8468 17.83

6 SwinIR46 0.14 M 33.97 G 1.15 0.8218 17.11

The bold font emphasizes the superior performance of the method over the other five in the comparative study
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Fig. 2 Descattering performance under varying concentration condition. The images in the first row are the raw scattered patterns captured by
the camera through a tank of fat emulsion with V equal to a 1.8 ml, b 2.4 ml, c 2.8 ml, d 3.2 ml, and e 3.6 ml, respectively, and f is the ground truth.
The images in the second row are the image reconstructed using the proposed DescatterNet. It is observable that the quality of the recovery images
deteriorates with increasing concentration, and the images become completely corrupted when the volume V exceeds 2.8 ml. The images in the
third and fourth rows provide additional two sets of examples. g The PSNR and Corr values associated with the raw and reconstructed images at
different concentrations
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smarter method to harness the information they contain,
we believe that the limit could be improved. This suggests
that the current constraints are not insurmountable and
that advancements in technology and methodology could
extend the capabilities of DescatterNet.

Generalization
We proceed to assess the generalization capabilities of

the proposed DescatterNet. This analysis will be con-
ducted along two distinct dimensions:
a. Cross-concentration generalization: This involves

evaluating how well the DescatterNet performs when
applied to the same type of scattering medium, but with
varying concentrations or densities. The goal is to
determine if the DescatterNet can effectively adapt to
and reconstruct images through media with different
level of scattering strengths without requiring retraining
for each specific concentration.

b. Cross-media generalization: This aspect of analysis
will test the DescatterNet’s ability to generalize
across different types of scattering media. The
objective is to understand if the DescatterNet can

maintain high performance when faced with
diverse scattering characteristics that may be
fundamentally different from those encountered
during the training phase.

By examining these two factors of generalization, we
aim to establish the robustness and flexibility of Descat-
terNet in handling a wide range of real-world scenarios
involving various scattering conditions.

Cross-concentration generalization
Here we provide a single illustrative example to showcase

the cross-concentration generalization. The blue curves in
Fig. 3a represent the similarity of the captured scattered
pattern (raw data) and the ground truth images, calculated
as an average over 100 different test samples. Both the
correlation coefficient (Corr) and PSNR metrics indicate
that the scattered patterns closely resemble the corre-
sponding ground truth images when the concentration of
the emulsion suspension is low. The reconstructed image
progressively becomes noisier as the concentration increa-
ses, and completely submerged in noise when the con-
centration reaches around 2.4ml [Fig. 2a].
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Fig. 3 Cross-concentration generalizability assessment. a The blue curve depicts the PSNR and Corr values of the raw scattering images across
various concentrations. The purple curve indicates the performance of the DescatterNet model trained solely on the 2.4 ml concentration dataset. In
contrast, the orange curve shows the performance of the DescatterNet model trained on a mixed dataset, highlighting its adaptability to different
concentrations. b The reconstructed images for a single image subjected to different scattering strengths. The composite images, which integrate
scattering patterns of multiple concentrations, are processed by the DescatterNet. This demonstration verifies the model’s proficiency in image
restoration across a spectrum of scattering conditions
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In contrast, the purple curve shows the performance of
a DescatterNet trained solely on a dataset with the con-
centration of V= 2.4 ml. The model demonstrates an
improvement in image reconstruction from raw data
across various concentrations, although images at low
concentration exhibit some degradation due to residual
noise and loss of fine structures. This issue can be dra-
matically mitigated by training the DescatterNet on a
mixed dataset that contains both low and high con-
centration data, as suggested by the comparatively flat
orange curves in Fig. 3a.
The cross-concentration generalization capability of the

proposed DescatterNet can be further exemplified by its
ability to reconstruct images from “virtual” scattered
patterns synthesized from experimentally acquired raw
data at different concentrations. Three examples of such
virtual scattered patterns are shown in Fig. 3b (labeled as
Input): They were synthesized from four regions captured
through the tank of fat emulsion with different con-
centrations (top-left: 1.2 ml, top-right: 2.4 ml, bottom-left:
2.4 ml, bottom-right: 1.8 ml). It is evident that all four
regions are well recovered in a single inference, with a
marked improvement in mean Corr/PSNR from 0.66/
11.63 dB to 0.89/17.69 dB.

Cross-media generalization
Now we proceed to examine how well a DescatterNet

model, trained on a dataset from a fat emulsion, can
reconstruct images from scattered patterns captured
through a milk suspension and artificial fog.
The milk suspension was prepared by applying drops of

fresh milk to a tank of pure water, as shown in Fig. 1a. The
artificial fog was generated by using an ultrasonic nebulizer
(model SG-06D/10D), which filled the entire tank with fog.
It is known that different scattering media consist of

micro particles of varying types and sizes2, leading to
unique scattering characteristics. This affects how object
information propagates through the scattering medium
and the resulting formation and statistics of the scattering
patterns. This variation is clearly seen by comparing the
experimentally acquired raw data in Fig. 1c (fat emulsion),
Fig. 4a (milk), and Fig. 4b (artificial fog), all captured
under identical illumination condition and camera setting.
The high dynamic range of the sCMOS camera (PCO

Edge 4.2) allows the raw data to capture a small amount of
ballistic and snake light that carries information about the
objects. Employing a Retinex-based method (details can
be found in the Method and Materials section), one can
reconstruct images from the raw data, as shown in
Fig. 4a(iii), b(iii). However, these images are quite noisy,
with a correlation coefficient of around 0.2 and a PSNR of
around 8 dB.
When we apply the proposed DescatterNet to the

reconstructed noisy images, we find that despite being

trained on a fat emulsion dataset, the DescatterNet can
significantly enhance the degraded images obtained
through other scattering media [Fig. 4a(iv), b(iv)], with the
Corr/PSNR increased dramatically from around 0.2/8 dB
to 0.9/16 dB.
Furthermore, the performance of the DescatterNet can

be optimized even more by fine-tune the trained model
with an additional dataset specific to the scattering media
in question, such as milk and artificial fog. This fine-tuning
process, as illustrated in Fig. 4a(v), b(v), leads to a further
enhancement in the quality of the reconstructed images,
showcasing the method’s adaptability and potential for
practical use across different scattering media.

Outdoor experiment results
To assess the practical performance of our method, we

demonstrate that the proposed DescatterNet, trained on a fat
emulsion dataset, can be directly used for outdoor imaging
through natural fog. The optical system used for the outdoor
experiments is depicted in Methods and Materials section.
Figure 5 presents the main results from the outdoor

experiments. For analytical purpose, we captured images
of the same scenes – houses in forest, and a villa – under
pristine weather conditions, which we used as the ground
truth [Fig. 5c(vi)]. On various foggy days, we recorded the
raw scattered patterns [Fig. 5c(i)] and reconstruct the
images using the DescatterNet. The reconstructed images
shown in Fig. 5c(iv) exhibit coefficient correlation and
PSNR values of approximately 0.7 and 17 dB for the
houses in the forest, and 14 dB for the villa, respectively. It
is noteworthy that neither the scenes nor the scattering
media were seen in the training dataset; nonetheless, the
results suggest that the proposed DescatterNet is capable
of capturing relevant information. Given the challenge of
collecting thousands of scattered-clear image pairs under
outdoor conditions, there are no fine-tuning results, as
shown in Fig. 5c(v), which illustrates one of the long-
standing obstacles hindering the practical application of
deep learning technology. Naturally, the quality of the
reconstructed images in this scenario may not match
those achieved in a controlled laboratory environment.
However, the DescatterNet still delivers superior perfor-
mance compared to the conventional non-learning-based
method we proposed in a previous study52.

Discussion
In this section, we discuss the accuracy of our hypoth-

esis and their contribution to the optimal reconstruction
performance of our method through various dynamic
scattering media in real time.

The functionality of the e-ink display
Our hypothesis posits that the e-ink display can effec-

tively simulate real-world objects, which is crucial for
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creating a representative training dataset. Unlike SLM or
DMD, which have reflectivity that differs from natural
scenes, the e-ink display’s Lambertian surface provides a
more realistic simulation with consistent brightness from
all viewing angles53.
To validate this hypothesis, we conducted a comparative

study between the e-ink display and an SLM. By swapping
the e-ink with an SLM (Pluto 6001, HoloEye Photonics
AG) in our setup, we maintained all other conditions
constant29. Despite the SLM’s small field-of-view, we
resized images to match this, resulting in two datasets for
training the DescatterNet. The performance is evaluated
by the correlation coefficient and the PSNR.
The results shown in Fig. 6 provides a clear illustration of

the comparative performance between the DescatterNet
models trained on these two datasets. The first row of
images presents the raw scattering patterns as captured by

the camera, with the second row showcasing the recon-
structed images, and the third row displays the ground truth
images for reference. It is evident that a DescatterNet trained
on SLM dataset can effectively reconstruct images that were
displayed on the same SLM [Fig. 6a]. The correlation coef-
ficient for simple objects are notably high, exceeding 0.9, and
even complex object like a race car achieve a Corr greater
than 0.7, consistent with the findings from our previous
study29. However, the same model, when tasked with
reconstructing images of real-world objects after replacing
the SLM with such objects, such as the USAF target and
China dolls, exhibits significant decline in performance, with
Corr falling below 0.7, as shown in Fig. 6b.
The contrast is strikely evident when compared to the

performance of a DescatterNet trained on an e-ink data-
set. As shown in Fig. 6c, it demonstrates a remarkable
ability to reconstruct images of real-world objects with

Unseen milk scattering data
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Fig. 4 Cross-media generalization assessment. Reconstructed images for a milk and b artificial fog scattering data. In a and b, (i), The raw
scattering images captured by the camera, and the images reconstructed using (ii) dark channel prior method, (iii) our preprocessing Retinex-based
method, (iv) DescatterNet trained on fat emulsion dataset, (v) DescatterNet with fine-tune using milk/artificial fog scattering data. (vi) The ground
truth images for comparison
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high fidelity, as indicated by Corr values approximately
equal to 0.9. This suggest that the e-ink display, with its
more natural reflectivity characteristics, provides more
suitable data for training. Readers can refer to the Sup-
plementary Video for a more comprehensive visual
representation of the results.

The effect of the preprocessing method
A pivotal factor contributing to the robust general-

ization and excellent results of our method is the imple-
mentation of an effective preprocessing strategy. Captured
images are subject to a myriad of factors, including var-
iations in concentrations, types of scattering media,
lighting conditions, and optical systems, which can lead to
diverse scattered patterns even for a constant scene. This
poses a significant challenge for network’s ability to gen-
eralize across different conditions.

To mitigate this challenge, we propose the Retinex-based
preprocessing method, design to reduce the domain gap
under different experimental conditions. The preprocessing
procedure is shown in Fig. 7a. Its objective is to remove the
uneven background of the captured and normalize the
dynamic range so as to facilitate better feature extraction.
For further analysis, we plot the histograms of images

under different condition (three images with varying con-
centrations) at various stages of preprocessing, shown in
Fig. 7b. The initial histogram (i) at the raw stage reveals
distinct distribution intervals and shapes, indicating sub-
stantial differences in lightness distributions. Direct training
on dataset from a specific condition would result in sub-
optimal reconstruction for images under other conditions, as
illustrated by the purple line in Fig. 3. The histogram (ii) post
Retinex49 processing shows that while differences in lightness
distribution intervals have been eliminated, variations in

5.9 km
Target

Shooting point
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Fig. 5 Outdoor experimental results. a Outdoor imaging system. b The targets to be imaged in our outdoor experiment. c The reconstructed
images from various methods. In c, (i) The raw images captured under scattering conditions and the reconstructed images using (ii) dark channel
prior method, (iii) Retinex-based algorithm, (iv) DescatterNet trained on indoor dataset, and (v) fine-tune DescatterNet (which is hard to achieve in
this case) and (vi) The ground truth images, serving as references for comparison
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histogram shapes persist. Following additional Contrast
Limited Adaptive Histogram Equalization (CLAHE) proces-
sing, as shown in (iii), the histograms converge.
The significance of the preprocessing method is

underscored by the experimental results shown in Fig. 7c.
Without preprocessing, a network trained exclusively on
indoor data struggles to accurately reconstruct real-world
outdoor objects. In contrast, the application of the pro-
posed preprocessing method significantly enhances the
network’s ability to generalize to outdoor conditions,
yielding superior reconstruction results. This demon-
strates that the preprocessing method effectively address
the critical issue of poor generalization due to disparate
experimental conditions, enabling the network to focus
on fitting reconstruction functions.

Comparison of different neural networks
In this subsection, we conduct a comparative analysis to

evaluate the performance of the proposed Descatter-Net

against several other prevalent learning-based methods,
including HNN26, MulScaleCNN29, Unet44, AttentionU-
Net45 and SwinIR46. These methods are assessed on their
ability to perform imaging through a tank of fat emulsion
with an optical thickness of 5.5.
The comparison criteria encompass several key metrics:

Model Size (quantified by the number of network para-
meters Npara), Computational Complexity (measured in
terms of floating-point operations: FLOPs), Inference
Speed (expressed in frames per second, FPS, based on the
same computation platform, the RTX3090), Image
Quality (assessed using Corr and PSNR). All neural net-
works were trained with the same strategy on the same
dataset to ensure a fair comparison.
The quantitative results summarized in Table 1

demonstrate the superiority of DescatterNet across var-
ious metrics. It achieves the highest image quality with
Corr of approximately 0.85 and PSNR of around 18 dB.
DescatterNet has a relatively modest model size of less
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Fig. 6 Performance comparison between SLM and E-ink display. a The raw images of virtual objects displayed on the SLM and the
corresponding images reconstructed by a DescatterNet trained on an SLM dataset. b The raw images of real-world objects and the corresponding
images reconstructed by a DescatterNet trained on an SLM dataset. c The raw images of real-world objects and the corresponding images
reconstructed by a DescatterNet trained on an e-ink dataset. d the PSNR and e the Corr values associated with the raw image of the three real-world
objects, and the images reconstructed by a DescatterNet trained on SLM dataset and e-ink dataset, respectively
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than 2 million parameters and a computational com-
plexity of 10.6 ×109 FLOPs. This efficiency allows for a
swift inference speed (up to 338 FPS) that is conducive to
real-time incoherent imaging through dynamic scattering
media. This capability is further illustrated in the Sup-
plementary Video.
In contrast, models like the transformer-based Swi-

nIR46, despite having a smaller model size of 0.14 millions
parameters, exhibit higher computational complexity
compared to DescatterNet. This results in increased
training inference times, with SwinIR achieving only 1.15
FPS in our tests.
In conclusion, we have demonstrated a versatile

learning-based method for real-time incoherent imaging
through dynamic scattering media: DescatterNet. This
method has been effectively demonstrated in both con-
trolled laboratory settings and unpredictable outdoor
environments, including conditions where the scattering
medium, such as fog, and the real-world objects were not

part of the training data. Experimental results suggest that
the DescatterNet outperforms other prevalent learning-
based and traditional methods across crucial metrics. It
excels not only in the quality of reconstructed images but
also in its modest computational resource requirements,
making it a practical solution for real-time applications.
Despite these advancements, there are still challenges to

be addressed in future work. These include: contrast over-
enhancement, outdoor large field-of-view image restora-
tion, and the combination of optical filtering methods,
and the enhancement of interpretability. We will be
focused on tackling these issues, making significant strides
towards more reliable and higher-fidelity imaging systems
that can be deployed in diverse real-world scenarios.

Methods and materials
Experimental setup for acquiring the training dataset
The proposed DescatterNet is trained on a dataset

acquired through a homemade scattering environment, a
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tank with dimensions of 32 cm × 32 cm × 60 cm, filled fat
emulsion (Intralipid 20%, Fresenius Kabi). The optical
properties of this medium has been well documented54.
The optical thickness of medium can be adjusted by
dropping a certain amount of intralipid into the tank of
purified water29.
To mimic a non-intrusive imaging mode, the light

source is designed to interact with the scattering medium
twice. Initially, it illuminates the medium directly, causing
light to scatter and subsequentially illuminate the object.
The light then propagates back through the scattering
medium and is captured by an imaging system, which is
comprised of an sCMOS camera (PCO Edge 4.2) and a
commercial Nikon lens (AF Nikon 50 mm f/1.8D).
The training set is composed of pair-up images of a

number of target objects and the corresponding scattered
patterns as seen through the tank of fat emulsion. The
ground truth images consists of 1350 images selected
from ImageNet43 and DIV2K55, which are displayed on an
e-ink display (10.3-inch, HDMI, e-paper, 1872 × 1404
pixels) during the data acquisition process.
Beyond the training set, the setup is also used to acquire

the scattered patterns of “virtual” objects not included in
the training set, such as the Pepper, Cameraman images,
as well as real-world objects such as the USAF target,
china dolls, and a Rubik’s cube.

Experimental setup for outdoor imaging through fog
One of the key contributions of this work is that our

DescatterNet trained on the indoor laboratory environ-
ment can be used for outdoor imaging real-world objects
through fog. To accommodate the natural fog and to
capture real-world objects at a distance, we employ a
telescope in place of the optical imaging system used
during the indoor dataset acquisition. Our outdoor ima-
ging system was built by integrating an angular selection
device (KURIOS-WL1/M, Thorlabs) into a commercial
Celestron telescope (CPC1100HD)52 which has an angle
of view (FOV) of 0.27o [Fig. 5a)]. The angular selection
device is crucial for filtering the light based on the angle of
incidence. Its transmittance is highly dependent on the
angle, dropping sharply as the incident angle of the
incoming light increases from 0 to about 6o. This means
that it only accepts the scattered light impinging the
telescope with relatively small angles. We also use a PCO
Edge4.2 sCMOS camera to capture the scattered patterns.
As shown in Fig. 5b, our outdoor experiment focuses on
imaging distant object, such as a house in forest and a villa
located 5.9 km away.

Data preprocessing pipeline
To reduce the domain gap across different scattering

conditions, we propose ae data preprocessing method that
combines Retinex and CLAHE. This approach minimizes

the impact of dataset bias and enhances the network’s
ability to generalize to various scattering media and out-
door conditions.
According to the Retinex theory48,49, image intensity

Iðx; yÞ at each pixel location ðx; yÞ is the product of the
reflectance Rðx; yÞ and illumination intensity Lðx; yÞ.
Retinex-based algorithms aim to remove the illumination
function Lðx; yÞ so as to obtain the reflectance Rðx; yÞ of
an object in question. Here we adapt this theory for
incoherent imaging through scattering media and propose
an extended model

I x; yð Þ ¼ R x; yð ÞL x; yð ÞT x; yð Þ þ Aðx; yÞ
where T x; yð Þ is the transmittance function, which
accounts for the attenuation of light as it passes through
the scattering medium, and Aðx; yÞ denotes the ambient
light or noise that is not related to the object’s reflectance
or the illumination source.

Thus, by separating the effects of illumination, reflec-
tance, transmittance, and ambient light, Retinex-based
algorithms can attempt to estimate and recover the
intrinsic reflectance properties of objects, even in the
presence of scattering. The method we employ in this
study is

Ir x; yð Þ ¼ Iðx; yÞ
F�1 F I x; yð Þf g�Ffg x; y; σð Þgf g þ ϵ

where F and F�1 denote Fourier and inverse Fourier
transforms, ϵ is a renormalization term, g x; y; σð Þ
represents a Gaussian filter with the standard deviation
σ . is the output image.

The resulting image Ir x; yð Þ is then normalized and
further processed using the CLAHE algorithm50,56. Unlike
traditional histogram equalization, which can over-
amplify noise, especially in low contrast regions, CLAHE
applies a process of histogram equalization locally, within
small, non-overlapping tiles or segments of the image.
Each tile is processed independently, which allows for the
enhancement of local contrast without introducing arti-
facts that might be caused by large-scale intensity varia-
tions. The equalization respects a predefined contrast
limit to prevent noise amplification. After the local
equalization, the boundaries between the tiles are
smoothly interpolated to ensure a natural transition and
to maintain the overall coherence of the image. The result
is an image with improved visibility of details and more
uniform distribution of intensity levels, which is particu-
larly beneficial for images with non-uniform illumination
or in applications where the enhancement of subtle details
is crucial.
The complete preprocessing algorithm is shown in the

following pseudo-code:
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Algorithm 1
Preprocessing algorithm
Input: Ii(x, y), raw images with a resolution of 2048 × 2048
1: Cropping
2: Ic(x, y) ← crop the center region of interest
3: I (x, y) ← resize Ic(x, y) to 448 × 448
4: Retinex-based
5: m, n ← size of I (x, y)
6: filter: gm×n (x, y, σ) ← exp{− [(x−m/2)2+ (y− n/2)2] / σ2}
7: Fg, FI← F {g}, F {I}
8: background: bg(x,y) ← F–1{ Fg · FI }
9: retinex: Ir(x, y) ← I (x, y) / bg(x,y) ← exp[ln(I(x,y)–ln(bg(x,y))]
10: normalize: Ir(x, y) ← [Ir−min(Ir)]/[max(Ir)−min(Ir)]
11: CLAHE
12: Itile(x,y) ← divide Ir(x, y) into 8 × 8 tiles
13: htile ← contrast limit histogram of each tile
14: I 0tileðx; yÞ ← transform pixel value of each Itile(x,y)
15: Io(x,y) ← interpolate(I 0tileðx; yÞ)
Output: Io(x,y), preprocessing image

DescatterNet architecture
The DescatterNet is composed of two primary compo-

nents: an Encoder and a Decoder. The Encoder accepts an
input of size 448 × 448 × 1 pixels and sequentially per-
forms four down-sampling operations through max-
pooling, resulting in five feature layers at varying scales.
Following each down-sampling operation, the number of
channels in the convolutional layers is incremented by a
factor of two. At each scale, the initial feature layer is
processed through a convolutional block that comprises
two 3 × 3 convolutional layers with N channels, succeeded
by a batch normalization layer and a rectified linear unit
(ReLU) activation function, as depicted by the blue legend
in Supplementary Fig. S1 in the Supplementary material.
To bolster the network’s generalization, a dropout layer
with a rate of 0.1 is integrated at the end of each scale’s
feature layer.
The Decoder reconstructs the image through four up-

sampling operations, realized by transposed convolu-
tions, also known as deconvolutions. Post each up-
sampling step, the Decoder concatenates the final feature
layer from the corresponding scale in the Encoder, as
indicated by the skip connections in the legend. These
skip connections facilitate the incorporation of fine-
grained information from the Encoder into the recon-
struction process. The concatenated feature layer then
proceeds through another convolutional block and a
dropout layer. The network culminates with a convolu-
tional layer designed for grayscale images, featuring one
channel with an output size of 448 × 448 × 1. For color
images, the channel count in the final layer is adjusted to
3. The output of the network is regulated to a range
between 0 and 1 by employing a sigmoid activation
function.

To determine the number of channels, we conducted
comparative experiments with various basic channel
numbers, including 1, 2, 4, 8, 16, 32, and 64. The results of
these comparisons are list in Supplementary Table S1 in
the Supplementary material. We observed that the infer-
ence speed of the UNet does not increase when the basic
channel number falls below 16, as the computational cost
is then predominantly determined by factors other than
network depth. Furthermore, experiments demonstrated
that a higher number of network layers does not neces-
sarily yield superior performance; for instance, networks
with 64 and 32 channels underperformed compared to
those with 16.
After evaluating multiple neural networks based on

memory usage, inference speed, and recovery perfor-
mance, we selected the optimal UNet with a basic channel
number of 16 for our DescatterNet. This choice was made
because it delivers strong performance across all eval-
uated criteria. This selection offers significant reference
value for extensive research, as this network can be
directly applied to validate our learning-based methods.

DescatterNet training
The mean square error (MSE) is used as the loss

function to train the DescatterNet:

L ¼ argmin
θ

1
N

XN

i¼1

jjGθ Iið Þ � Rijj2

where Gθ represents the network with parameter θ, Ii is
the input image. Ri is the corresponding label (ground
truth), and N is the size of the dataset. The MSE loss
function can train an effective network more efficiently
than other loss functions.

The first 1300 pairs of data from the e-ink display were
allocated to form the training set, with 1200 used for
training and 100 for validation purposes. The remaining
data comprised the test set. The network was initialized
with a learning rate of 0.01. If the validation loss plateaus
for 50 epochs without improvement, the learning rate is
reduced to one-tenth of its original value, with a mini-
mum threshold set at 0.00001. Training was conducted
for 200 epochs using a batch size of 8 (Please refer to
Supplementary Fig. S2 in the Supplementary material for
the loss curve). The Adam optimizer was employed for
the optimization process, and the model exhibiting the
optimal performance on the validation set was preserved.
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