22 research outputs found

    Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Get PDF
    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 ΌΔ was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring

    Fe3O4–Au and Fe2O3–Au Hybrid Nanorods: Layer-by-Layer Assembly Synthesis and Their Magnetic and Optical Properties

    Get PDF
    A layer-by-layer technique has been developed to synthesize FeOOH–Au hybrid nanorods that can be transformed into Fe2O3–Au and Fe3O4–Au hybrid nanorods via controllable annealing process. The homogenous deposition of Au nanoparticles onto the surface of FeOOH nanorods can be attributed to the strong electrostatic attraction between metal ions and polyelectrolyte-modified FeOOH nanorods. The annealing atmosphere controls the phase transformation from FeOOH–Au to Fe3O4–Au and α-Fe2O3–Au. Moreover, the magnetic and optical properties of as-synthesized Fe2O3–Au and Fe3O4–Au hybrid nanorods have been investigated

    Microstructure and Corrosion Resistance of Fusion Welding Zone for Duplextubes Welded with Q345R Tube Sheet under Different Welding Currents

    No full text
    Duplextubes are widely used in oil and gas storage and transportation, the nuclear industry, and other fields, but the welding quality of metals is an important factor affecting the use of equipment. In order to study the welding quality of S10C steel/Incoloy 825 duplextubes and Q345R tube sheet based on gas tungsten arc welding technology with a filler of ER50-6 carbon steel welding wire, the microstructure and grain size of fusion welding zone of duplextubes and tube sheet under welding currents of 150 A, 160 A, and 170 A were studied by optical microscopy and scanning electron microscopy. At the same time, the corrosion behavior of fusion welding zone after the welding was investigated in 3.5 wt.% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the metallurgical structure of the fusion welding zone was mainly composed of ÎŽ-ferrite and retained austenite. The grain size in the fusion welding zone increased with the increase of the welding current. The corrosion resistance of the fusion welding zone welded with a high welding current of 170 A was better than that with low welding currents. However, the pitting corrosion resistance of fusion welding zone with the lowest welding current of 150 A was better than that with high welding currents. This study can provide a preliminary exploration for the manufacture and applicability of duplextubes air coolers

    Microstructure and Corrosion Resistance of Fusion Welding Zone for Duplextubes Welded with Q345R Tube Sheet under Different Welding Currents

    No full text
    Duplextubes are widely used in oil and gas storage and transportation, the nuclear industry, and other fields, but the welding quality of metals is an important factor affecting the use of equipment. In order to study the welding quality of S10C steel/Incoloy 825 duplextubes and Q345R tube sheet based on gas tungsten arc welding technology with a filler of ER50-6 carbon steel welding wire, the microstructure and grain size of fusion welding zone of duplextubes and tube sheet under welding currents of 150 A, 160 A, and 170 A were studied by optical microscopy and scanning electron microscopy. At the same time, the corrosion behavior of fusion welding zone after the welding was investigated in 3.5 wt.% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the metallurgical structure of the fusion welding zone was mainly composed of δ-ferrite and retained austenite. The grain size in the fusion welding zone increased with the increase of the welding current. The corrosion resistance of the fusion welding zone welded with a high welding current of 170 A was better than that with low welding currents. However, the pitting corrosion resistance of fusion welding zone with the lowest welding current of 150 A was better than that with high welding currents. This study can provide a preliminary exploration for the manufacture and applicability of duplextubes air coolers

    Study on prediction and optimization of gas–solid erosion on S-Zorb reactor distribution plate

    No full text
    Adsorption desulfurization of catalytic gasoline (S Zorb) is an important desulfurization measure that is performed to meet the environmental protection requirements before the final product oil is sold in the market. The desulfurization reactor is a gas–solid two-phase flow environment composed of high-temperature and high-pressure hydrogen-oil mixed gas and sorbent particles; erosion prominently occurs on the reactor distribution plate. This study selects the typical gas–solid two-phase flow conditions and defines the erosion mechanism of the gas–solid two-phase flow environment for the plastic material of E347. Moreover, an S Zorb desulfurization reactor model is constructed, the CFD-DEM model is adopted to predict the wall erosion characteristics in a gas–solid two-phase flow environment, typical erosion laws are obtained via calculations. The erosion laws under the influence of variable parameters are studied based on the orthogonal test, the orthogonal test results show the best parameter combination, the parameter combination yields the maximum erosion rate and high erosion area that are 29.9% and 17.3%, respectively, lower than the existing values. Moreover, an optimum scheme of the inner structure parameters of the reactor is determined for reducing erosion rate and area

    Experiment and numerical simulation investigation on cavitation evolution and damage in the throttling section of pressure reducing valve

    No full text
    Abstract For the phenomenon of widespread and serious cavitation damage in the throttling section of pressure reducing valve under high temperature and high pressure in the chemical technology process of petroleum and coal, according to actual coordination structure widely applied between the valve core and valve seat, the cavitation throttling section with symmetrical contraction and expansion was made, and the visualized cavitation water tunnel experimental apparatus was designed and constructed. The cavitation evolution process with time under different cavitation numbers σ was recorded by the high‐speed photography, the variation law of cavitation damage length and area with time was investigated by using aluminum film as cavitation damage carrier. Based on the experimental cavitation characteristic length L*, the evaporation coefficient Fv, and condensation coefficient Fc in the Zwart–Gerber–Belamri cavitation numerical model were modified, and the cavitation damage region was predicted by the gas phase condensation rate of numerical simulation. The results show that with the decrease of cavitation number, the characteristic length of cavitation strip increases; the cavitation characteristic length fluctuates greatly at σ = 1.22, and there are cavitation cloud periodic formation, shedding, collapse, and disappearance at the tail of the cavitation strip on the upper valve seat; the cavitation damage length of the upper and lower valve seat remains unchanged with time, and the cavitation damage area increases approximately linearly with time; the initial position and length of cavitation damage predicted by the gas phase condensation rate are basically consistent with the experimental results, which verifies the accuracy of the modified numerical simulation

    ZnS nanotubes/carbon cloth as a reversible and high-capacity anode material for lithium-ion batteries

    Full text link
    Metal sulfides have been considered as one of the most promising class of anode materials for lithium-ion batteries. However, large volume change and low intrinsic electrical conductivity significantly restrict the performance. Herein, flexible electrode materials comprising ZnS nanotubes/carbon cloth are prepared by combined solvothermal and ion-exchange sulfidation technique. The ZnS nanotube array/carbon cloth electrode is assessed for application in lithium-ion batteries and remarkable improvement towards reversible capacity was observed. A notable capacity of 1053 mAh g(-1) at 0.2 C and a maintained reversible capacity of 608 mAh g(-1) after 100 cycles are observed, which are both comparable to similar materials in previously published reports. The ZnS nanotubes with small dimension and uniform dispersion grown directly on carbon cloth can effectively shorten the path of the lithium-ions, facilitating the charge transfer of the electrode. The carbon cloth and the three-dimensional (3D) structured carbon fiber exhibit a large surface area and can thus efficiently reduce the volume change during the discharge/charge cycles
    corecore