423 research outputs found

    Pressure and electric field dependence of quasicrystalline electronic states in 30∘^{\circ} twisted bilayer graphene

    Full text link
    30∘^{\circ} twisted bilayer graphene demonstrates the quasicrystalline electronic states with 12-fold symmetry. These states are however far away from the Fermi level, which makes conventional Dirac fermion behavior dominating the low energy spectrum in this system. By using tight-binding approximation, we study the effect of external pressure and electric field on the quasicrystalline electronic states. Our results show that by applying the pressure perpendicular to graphene plane one can push the quasicrystalline electronic states towards the Fermi level. Then, the electron or hole doping of the order of ∼\sim 4×10144\times10^{14} cm−2cm^{-2} is sufficient for the coincidence of the Fermi level with these quasicrystalline states. Moreover, our study indicates that applying the electric field perpendicular to the graphene plane can destroy the 12-fold symmetry of these states and break the energy degeneracy of the 12-wave states, and it is easier to reach this in the conduction band than in the valence band. Importantly, the application of the pressure can recover the 12-fold symmetry of these states to some extent against the electric field. We propose a hybridization picture which can explain all these phenomena.Comment: 7 pages, 8 figures, 1 tabl

    Insight into Conformational Change for 14-3-3σ Protein by Molecular Dynamics Simulation

    Get PDF
    14-3-3σ is a member of a highly conserved family of 14-3-3 proteins that has a double-edged sword role in human cancers. Former reports have indicated that the 14-3-3 protein may be in an open or closed state. In this work, we found that the apo-14-3-3σ is in an open state compared with the phosphopeptide bound 14-3-3σ complex which is in a more closed state based on our 80 ns molecular dynamics (MD) simulations. The interaction between the two monomers of 14-3-3σ in the open state is the same as that in the closed state. In both open and closed states, helices A to D, which are involved in dimerization, are stable. However, large differences are found in helices E and F. The hydrophobic contacts and hydrogen bonds between helices E and G in apo-14-3-3σ are different from those in the bound 14-3-3σ complex. The restrained and the mutated (Arg56 or Arg129 to alanine) MD simulations indicate that the conformation of four residues (Lys49, Arg56, Arg129 and Tyr130) may play an important role to keep the 14-3-3σ protein in an open or closed state. These results would be useful to evaluate the 14-3-3σ protein structure-function relationship

    Quantum error pre-compensation for quantum noisy channels

    Full text link
    Most previous efforts of quantum error correction focused on either extending classical error correction schemes to the quantum regime by performing a perfect correction on a subset of errors, or seeking a recovery operation to maximize the fidelity between a input state and its corresponding output state of a noisy channel. There are few results concerning quantum error pre-compensation. Here we design an error pre-compensated input state for an arbitrary quantum noisy channel and a given target output state. By following a procedure, the required input state, if it exists, can be analytically obtained in single-partite systems. Furthermore, we also present semidefinite programs to numerically obtain the error pre-compensated input states with maximal fidelities between the target state and the output state. The numerical results coincide with the analytical results.Comment: 10 pages, 3 figures

    Localizing noncooperative receiver through full-duplex amplify-and-forward relay

    Get PDF
    Localizing noncooperative transmitter (Tx) and receiver (Rx) that belong to another system is important in many scenarios, e.g., interference management in cognitive radio systems and user behavior learning in ad hoc wireless networks. However, obtaining the locations of these nodes in particular in frequency-division duplex systems is challenging, since the localization network usually does not know the spectrum that the Rx uses for backward transmission. In this paper, we propose to use the full-duplex relay technique to localize a noncooperative Rx, which does not require the knowledge of the Rx’s backward transmission spectrum. In the proposed method, localization sensors alternatively act as a full-duplex amplify-and-forward relay to trigger the power control of the Tx–Rx link. Then, by detecting the power adjustment of the Tx, each localization sensor can estimate the time difference of arrival between the direct and relay signals. Finally, the Rx location can be calculated from triangulation. Simulation results show that the proposed method can effectively localize the Rx, which validates its potential for receiver-aware applications and services
    • …
    corecore