9,699 research outputs found

    Thermal entanglement in a two-spin-qutrit system under a nonuniform external magnetic field

    Full text link
    The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction under a magnetic field in an arbitrary direction is investigated. Negativity, the measurement of entanglement, is calculated. We find that for any temperature the evolvement of negativity is symmetric with respect to magnetic field. The behavior of negativity is presented for four different cases. The results show that for different temperature, different magnetic field give maximum entanglement. Both the parallel and antiparallel magnetic field cases are investigated qualitatively (not quantitatively) in detail, we find that the entanglement may be enhanced under an antiparallel magnetic field.Comment: 2 eps figure

    Isospin and a possible interpretation of the newly observed X(1576)

    Get PDF
    Recently, the BES collaboration observed a broad resonant structure X(1576) with a large width being around 800 MeV and assigned its JPCJ^{PC} number to 1−−1^{--}. We show that the isospin of this resonant structure should be assigned to 1. This state might be a molecule state or a tetraquark state. We study the consequences of a possible K∗(892)K^*(892)-κˉ{\bar \kappa} molecular interpretation. In this scenario, the broad width can easily be understood. By using the data of B(J/ψ→Xπ0)⋅B(X→K+K−)B(J/\psi\to X\pi^0)\cdot B(X\to K^+K^-), the branching ratios B(J/ψ→Xπ0)⋅B(X→π+π−)B(J/\psi\to X\pi^0)\cdot B(X\to \pi^+\pi^-) and B(J/ψ→Xπ0)⋅B(X→K+K−π+π−)B(J/\psi\to X\pi^0)\cdot B(X\to K^+K^-\pi^+\pi^-) are further estimated in this molecular state scenario. It is shown that the X→π+π−X\to \pi^+\pi^- decay mode should have a much larger branching ratio than the X→K+K−X\to K^+K^- decay mode has. As a consequence, this resonant structure should also be seen in the J/ψ→π+π−π0J/\psi\to \pi^+\pi^-\pi^0 and J/ψ→K+K−π+π−π0J/\psi\to K^+K^-\pi^+\pi^-\pi^0 processes, especially in the former process. Carefully searching this resonant structure in the J/ψ→π+π−π0J/\psi\to \pi^+\pi^-\pi^0 and J/ψ→K+K−π+π−π0J/\psi\to K^+K^-\pi^+\pi^-\pi^0 decays should be important for understanding the structure of X(1567).Comment: 5 pages, ReVTeX4, 3 figures. Version accepted for publication as a brief report in Phys. Rev.

    Fractional topological phase in one-dimensional flatbands with nontrivial topology

    Get PDF
    We show the existence of the fractional topological phase (FTP) in a one-dimensional interacting fermion model using exact diagonalization, in which the non-interacting part has flatbands with nontrivial topology. In the presence of the nearest-neighbouring interaction V1V_{1}, the FTP at filling factor ν=1/3\nu =1/3 appears. It is characterized by the three-fold degeneracy and the quantized total Berry phase of the ground-states. The FTP is destroyed by a next-nearest-neighbouring interaction V2V_{2} and the phase diagrams in the (V1,V2)(V_{1},V_{2}) plane is determined. We also present a physical picture of the phase and discuss its existence in the nearly flatband. Within the picture, we argue that the FTP at other filling factors can be generated by introducing proper interactions. The present study contributes to a systematic understanding of the FTPs and can be realized in cold-atom experiments.Comment: 5 pages, 5 figures. To appear in Phys. Rev.

    Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field

    Full text link
    The thermal entanglement in a two-qubit Heisenberg \emph{XXZ} spin chain is investigated under an inhomogeneous magnetic field \emph{b}. We show that the ground-state entanglement is independent of the interaction of \emph{z}-component JzJ_{z}. The thermal entanglement at the fixed temperature can be enhanced when JzJ_{z} increases. We strictly show that for any temperature \emph{T} and JzJ_{z} the entanglement is symmetric with respect to zero inhomogeneous magnetic field, and the critical inhomogeneous magnetic field bcb_{c} is independent of JzJ_{z}. The critical magnetic field BcB_{c} increases with the increasing ∣b∣|b| but the maximum entanglement value that the system can arrive becomes smaller.Comment: 5 EPS figure

    Enhanced breaking of heavy quark spin symmetry

    Get PDF
    Heavy quark spin symmetry is useful to make predictions on ratios of decay or production rates of systems involving heavy quarks. The breaking of spin symmetry is generally of the order of O(ΛQCD/mQ)O({\Lambda_{\rm QCD}/m_Q}), with ΛQCD\Lambda_{\rm QCD} the scale of QCD and mQm_Q the heavy quark mass. In this paper, we will show that a small SS- and DD-wave mixing in the wave function of the heavy quarkonium could induce a large breaking in the ratios of partial decay widths. As an example, we consider the decays of the Υ(10860)\Upsilon(10860) into the χbJω (J=0,1,2)\chi_{bJ}\omega\, (J=0,1,2), which were recently measured by the Belle Collaboration. These decays exhibit a huge breaking of the spin symmetry relation were the Υ(10860)\Upsilon(10860) a pure 5S5S bottomonium state. We propose that this could be a consequence of a mixing of the SS-wave and DD-wave components in the Υ(10860)\Upsilon(10860). Prediction on the ratio Γ(Υ(10860)→χb0ω)/Γ(Υ(10860)→χb2ω)\Gamma(\Upsilon(10860)\to\chi_{b0}\omega)/\Gamma(\Upsilon(10860)\to\chi_{b2}\omega) is presented assuming that the decay of the DD-wave component is dominated by the coupled-channel effects.Comment: 13 pages, 5 figures. Discussion extended, version to appear in Phys.Lett.

    Electronic structure of the electron-doped cuprate superconductors

    Full text link
    Within the framework of the kinetic energy driven d-wave superconductivity, the electronic structure of the electron doped cuprate superconductors is studied. It is shown that although there is an electron-hole asymmetry in the phase diagram, the electronic structure of the electron-doped cuprates in the superconducting-state is similar to that in the hole-doped case. With increasing the electron doping, the spectral weight in the (Ï€,0)(\pi,0) point increases, while the position of the superconducting quasiparticle peak is shifted towards the Fermi energy. In analogy to the hole-doped case, the superconducting quasiparticles around the (Ï€,0)(\pi,0) point disperse very weakly with momentum.Comment: 8 pages, 3 figures, accepted for publication in Phys. Lett.

    The fundamental role of superconducting quasiparticle coherence in cuprate superconductors

    Full text link
    Within the kinetic energy driven superconducting mechanism, we study the interplay between superconductivity and the nodal and antinodal superconducting quasiparticle coherences in cuprate superconductors, and find the s-wave superconducting transition temperature is heavily suppressed by the antinodal superconducting quasiparticle coherence, while the d-wave superconducting transition temperature is enhanced, therefore the antinodal superconducting quasiparticle coherence plays a more crucial role in superconductivity of cuprate superconductors.Comment: 4 pages, 2 figures, typos correcte

    Optimal teleportation via thermal entangled states of a two-qubit Heisenberg Chain

    Full text link
    We study the optimal teleportation based on Bell measurements via the thermal states of a two-qubit Heisenberg XXX chain in the presence of Dzyaloshinsky-Moriya (DM) anisotropic antisymmetric interaction and obtain the optimal unitary transformation. The explicit expressions of the output state and the teleportation fidelity are presented and compared with those of the standard protocol. It is shown that in this protocol the teleportation fidelity is always larger and unit fidelity is achieved at zero temperature. The DM interaction can enhance the teleportation fidelity at finite temperatures, as opposed to the effect of the interaction in the standard protocol. Cases with other types of anisotropies are also discussed.Comment: Accepted by EP

    Interaction effect in two-dimensional Dirac fermions

    Get PDF
    Based on the Dirac equations in the two-dimensional π−\pi- flux model, we study the interaction effects both in nontrivial gapped and gapless Dirac equations with numerical exact diagonalization method. In the presence of the nearest and next nearest neighbor interactions: for nontrivial gapped Dirac equation, the topological phase is robust and persists in a finite region of the phase diagram; while for gapless Dirac equation, charge-density-wave and stripe phases are identified and the phase diagram in (V1,V2)(V_1, V_2) plane is obtained. When the next-next-nearest neighbor interaction is further included to gapless Dirac equation, the topological phase expected in the mean-field theory is absent. Our results are related to the possibility of dynamically generating topological phase from the electronic correlations.Comment: 7 pages, 8 figures. More discussins are added; accepted for publication in Physical Review
    • …
    corecore