7,155 research outputs found
Experimentally reducing the quantum measurement back-action in work distributions by a collective measurement
In quantum thermodynamics, the standard approach to estimate work
fluctuations in unitary processes is based on two projective measurements, one
performed at the beginning of the process and one at the end. The first
measurement destroys any initial coherence in the energy basis, thus preventing
later interference effects. In order to decrease this back-action, a scheme
based on collective measurements has been proposed in~[PRL 118, 070601 (2017)].
Here, we report its experimental implementation in an optical system. The
experiment consists of a deterministic collective measurement on identically
prepared two qubits, encoded in the polarisation and path degree of a single
photon. The standard two projective measurement approach is also experimentally
realized for comparison. Our results show the potential of collective schemes
to decrease the back-action of projective measurements, and capture subtle
effects arising from quantum coherence.Comment: 9 pages, 4 figure
Algebraic solution for a two-level atom in radiation fields and the Freeman resonances
Journal ArticleUsing techniques of complex analysis in an algebraic approach, we solve the wave equation for a two-level atom interacting with a monochromatic light field exactly. A closed-form expression for the quasienergies is obtained, which shows that the Bloch-Siegert shift is always finite, regardless of whether the original or the shifted level spacing is an integral multiple of the driving frequency ω. We also find that the wave functions, though finite when the original level spacing is an integral multiple of ω, become divergent when the intensity-dependent shifted energy spacing is an integral multiple of the photon energy. This result provides an ab initio theoretical explanation for the occurrence of the Freeman resonances observed in above-threshold ionization experiments
High-precision quasienergies for a driven two-level atom at the two-photon preresonance
Journal ArticleA computation with unprecedented precision is presented for quasienergies of a two-level atom in a monochromatic radiation on the basis of a recently obtained exact expression [D.-S. Guo et al., Phys. Rev. A 73,023419 (2006)]. We start with the proof of an expression theorem. With this theorem the quasienergies for any two-level atom can be expressed in terms of the quasienergies for only those with the original energy spacing (per field photon energy) being an integer (preresonances). Then we carry out a numerical evaluation of the quasienergies at the two-photon preresonance, which involves computing an infinite determinant, up to the 18th power of the coupling strength. The theoretical prediction presents an experimental challenge for highprecision tests of quantum mechanics and could be exploited for precise calibration of high laser intensities
- …