1,267 research outputs found

    Selfsimilar solutions in a sector for a quasilinear parabolic equation

    Full text link
    We study a two-point free boundary problem in a sector for a quasilinear parabolic equation. The boundary conditions are assumed to be spatially and temporally "self-similar" in a special way. We prove the existence, uniqueness and asymptotic stability of an expanding solution which is self-similar at discrete times. We also study the existence and uniqueness of a shrinking solution which is self-similar at discrete times.Comment: 23 page

    Nonlinear Dynamical Stability of Newtonian Rotating White Dwarfs and Supermassive Stars

    Full text link
    We prove general nonlinear stability and existence theorems for rotating star solutions which are axi-symmetric steady-state solutions of the compressible isentropic Euler-Poisson equations in 3 spatial dimensions. We apply our results to rotating and non-rotating white dwarf, and rotating high density supermassive (extreme relativistic) stars, stars which are in convective equilibrium and have uniform chemical composition. This paper is a continuation of our earlier work ([28])

    Existence and Nonlinear Stability of Rotating Star Solutions of the Compressible Euler-Poisson Equations

    Full text link
    We prove existence of rotating star solutions which are steady-state solutions of the compressible isentropic Euler-Poisson (EP) equations in 3 spatial dimensions, with prescribed angular momentum and total mass. This problem can be formulated as a variational problem of finding a minimizer of an energy functional in a broader class of functions having less symmetry than those functions considered in the classical Auchmuty-Beals paper. We prove the nonlinear dynamical stability of these solutions with perturbations having the same total mass and symmetry as the rotating star solution. We also prove local in time stability of W^{1, \infty}(\RR^3) solutions where the perturbations are entropy-weak solutions of the EP equations. Finally, we give a uniform (in time) a-priori estimate for entropy-weak solutions of the EP equations

    Phase Segregation Dynamics in Particle Systems with Long Range Interactions I: Macroscopic Limits

    Full text link
    We present and discuss the derivation of a nonlinear non-local integro-differential equation for the macroscopic time evolution of the conserved order parameter of a binary alloy undergoing phase segregation. Our model is a d-dimensional lattice gas evolving via Kawasaki exchange dynamics, i.e. a (Poisson) nearest-neighbor exchange process, reversible with respect to the Gibbs measure for a Hamiltonian which includes both short range (local) and long range (nonlocal) interactions. A rigorous derivation is presented in the case in which there is no local interaction. In a subsequent paper (part II), we discuss the phase segregation phenomena in the model. In particular we argue that the phase boundary evolutions, arising as sharp interface limits of the family of equations derived in this paper, are the same as the ones obtained from the corresponding limits for the Cahn-Hilliard equation.Comment: amstex with macros (included in the file), tex twice, 20 page

    Ten-year incidence of primary angle closure in elderly Chinese: the Liwan Eye Study

    Get PDF
    PURPOSE: To determine the 10-year incidence of all forms of primary angle closure (PAC) in phakic eyes and its risk factors in an urban Chinese population aged 50 years and older. METHODS: Survivors of 1405 baseline participants were invited to attend the 10-year follow-up visit in the Liwan Eye Study. Participants with established baseline angle closure, including primary angle closure suspects (PACS), PAC and primary angle closure glaucoma (PACG), or those who underwent bilateral cataract surgery during the 10-year period, as well as those who did not tolerate gonioscopic examinations, were excluded from this analysis. Incident PAC was present when those with open angles at baseline developed angle closure in any form in either eye during the 10-year period. RESULTS: Among 791 participants who returned during the 10-year follow-up visit, 620 (78.4%) provided data on PAC incidence. The 10-year cumulative incidence of any forms of PAC was 20.5% (127/620, 95% CI 17.4% to 24.9%), including 16.9%, 2.4% and 1.1% with incident PACS, PAC and PACG in either eye, respectively. In multiple logistic regression, significant risk factors for incident angle closure were greater baseline lens thickness (OR=1.82 per mm, p=0.003), shallower anterior chamber depth (OR=3.18 per mm decreased, p=0.010) and narrower angle width (OR=1.63 per decreased angle width, p<0.0001). CONCLUSIONS: Approximately one in five people aged 50 years and older developed some form of angle closure over a 10-year period. Small ocular dimensions and hyperopia at baseline were associated with the development of angle closure

    Signatures of Molecular Magnetism in Single-Molecule Transport Spectroscopy

    Full text link
    Single-molecule transistors provide a unique experimental tool to investigate the coupling between charge transport and the molecular degrees of freedom in individual molecules. One interesting class of molecules for such experiments are the single-molecule magnets, since the intramolecular exchange forces present in these molecules should couple strongly to the spin of transport electrons, thereby providing both new mechanisms for modulating electron flow and also new means for probing nanoscale magnetic excitations. Here we report single-molecule transistor measurements on devices incorporating Mn12 molecules. By studying the electron-tunneling spectrum as a function of magnetic field, we are able to identify clear signatures of magnetic states and their associated magnetic anisotropy. A comparison of the data to simulations also suggests that electron flow can strongly enhance magnetic relaxation of the magnetic molecule

    Search for charged Higgs decays of the top quark using hadronic tau decays

    Full text link
    We present the result of a search for charged Higgs decays of the top quark, produced in ppˉp\bar{p} collisions at s=\surd s = 1.8 TeV. When the charged Higgs is heavy and decays to a tau lepton, which subsequently decays hadronically, the resulting events have a unique signature: large missing transverse energy and the low-charged-multiplicity tau. Data collected in the period 1992-1993 at the Collider Detector at Fermilab, corresponding to 18.7±\pm0.7~pb1^{-1}, exclude new regions of combined top quark and charged Higgs mass, in extensions to the standard model with two Higgs doublets.Comment: uuencoded, gzipped tar file of LaTeX and 6 Postscript figures; 11 pp; submitted to Phys. Rev.

    Inclusive jet cross section in pˉp{\bar p p} collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    The inclusive jet differential cross section has been measured for jet transverse energies, ETE_T, from 15 to 440 GeV, in the pseudorapidity region 0.1η\leq | \eta| \leq 0.7. The results are based on 19.5 pb1^{-1} of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with ET>200E_T>200 GeV is significantly higher than current predictions based on O(αs3\alpha_s^3) perturbative QCD calculations. Various possible explanations for the high-ETE_T excess are discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review Letter

    Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats

    Get PDF
    This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets

    Measurement of Dijet Angular Distributions at CDF

    Get PDF
    We have used 106 pb^-1 of data collected in proton-antiproton collisions at sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular distributions in events with two jets in the final state. The angular distributions agree with next to leading order (NLO) predictions of Quantum Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at 95% confidence level (CL) a model of quark substructure in which only up and down quarks are composite and the contact interaction scale is Lambda_ud(+) < 1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6 TeV.Comment: 16 pages, 2 figures, 2 tables, LaTex, using epsf.sty. Submitted to Physical Review Letters on September 17, 1996. Postscript file of full paper available at http://www-cdf.fnal.gov/physics/pub96/cdf3773_dijet_angle_prl.p
    corecore