52,718 research outputs found
Recommended from our members
Robust H2/H∞-state estimation for discrete-time systems with error variance constraints
Copyright [1997] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper studies the problem of an H∞-norm and variance-constrained state estimator design for uncertain linear discrete-time systems. The system under consideration is subjected to
time-invariant norm-bounded parameter uncertainties in both the state and measurement matrices. The problem addressed is the design of
a gain-scheduled linear state estimator such that, for all admissible measurable uncertainties, the variance of the estimation error of each state is not more than the individual prespecified value, and the transfer function from disturbances to error state outputs satisfies the prespecified H∞-norm upper bound constraint, simultaneously. The conditions for the existence of desired estimators are obtained in terms of matrix inequalities, and the explicit expression of these estimators is also derived. A numerical example is provided to demonstrate various aspects of theoretical results
Recommended from our members
A Body-Nonlinear Green's Function Method with Viscous Dissipation Effects for Large-Amplitude Roll of Floating Bodies
A novel time-domain body-nonlinear Green’s function method is developed for evaluating large-amplitude roll damping of two-dimensional floating bodies with consideration of viscous dissipation effects. In the method, the instantaneous wetted surface of floating bodies is accurately considered, and the viscous dissipation effects are taken into account based on the “fairly perfect fluid” model. As compared to the method based on the existing inviscid body-nonlinear Green’s function, the newly proposed method can give a more accurate damping coefficient of floating bodies rolling on the free surface with large amplitudes according to the numerical tests and comparison with experimental data for a few cases related to ship hull sections with bilge keels
A sharp stability criterion for the Vlasov-Maxwell system
We consider the linear stability problem for a 3D cylindrically symmetric
equilibrium of the relativistic Vlasov-Maxwell system that describes a
collisionless plasma. For an equilibrium whose distribution function decreases
monotonically with the particle energy, we obtained a linear stability
criterion in our previous paper. Here we prove that this criterion is sharp;
that is, there would otherwise be an exponentially growing solution to the
linearized system. Therefore for the class of symmetric Vlasov-Maxwell
equilibria, we establish an energy principle for linear stability. We also
treat the considerably simpler periodic 1.5D case. The new formulation
introduced here is applicable as well to the nonrelativistic case, to other
symmetries, and to general equilibria
- …