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The analytical expression of all DDP solutions is then given by
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where the elementsX are free to assume any value.R
�

coincides
with V�, therefore, as stated by Proposition 5, the DDPPP is solvable
as well.

V. CONCLUSIONS

The DDP via state feedback with stability and/or pole placement,
for a particular class of linear systems, was the object of this
paper. The methodology proposed for its solution was based on the
characterization of self-bounded(A;B)-invariant subspaces, and a
reliable numerically stable computational procedure was proposed
for obtaining an analytical expression of all possible state feedback
controllers. A similar methodology was also applied to the DDPM
with stability and/or pole placement, and a procedure for obtaining an
analytical expression of a reduced-order compensator was outlined.

The approach adopted in this work for the DDP solution presents
some advantages when compared to other ones available in the litera-
ture. Namely, a larger class of systems is treated with stability and/or
pole placement considerations, and an explicit analytical expression
is derived for the corresponding feedback matrices. Such expressions
are very useful for design purposes, mainly when performance
specifications, complementary to disturbance decoupling ones, are
also included.
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Robust -State Estimation for Discrete-Time
Systems with Error Variance Constraints

Zidong Wang, Zhi Guo, and H. Unbehauen

Abstract— This paper studies the problem of an H1-norm and
variance-constrained state estimator design for uncertain linear
discrete-time systems. The system under consideration is subjected to
time-invariant norm-bounded parameter uncertainties in both the state
and measurement matrices. The problem addressed is the design of
a gain-scheduled linear state estimator such that, for all admissible
measurable uncertainties, the variance of the estimation error of
each state is not more than the individual prespecified value, and the
transfer function from disturbances to error state outputs satisfies the
prespecified H1-norm upper bound constraint, simultaneously. The
conditions for the existence of desired estimators are obtained in terms
of matrix inequalities, and the explicit expression of these estimators is
also derived. A numerical example is provided to demonstrate various
aspects of theoretical results.

Index Terms—H1-state estimation, Kalman filtering, robust state
estimation, uncertain systems.

I. INTRODUCTION

The so-called Kalman filtering, which is one of the most popular
estimation approaches, has been well studied in the past 30 years.
The main idea is to design a filter to minimize the estimation
error covariance; see [1]. This estimation approach is based on the
assumption that the system model under consideration is exactly
known and its disturbances are Gaussian noises with known statistics.
However, the Kalman filter-type observer may not be robust against
modeling uncertainty and disturbances. This has brought to focus the
importance of robust estimation andH1 estimation and has attracted
significant research interests in the past decade. For example, a robust
Kalman filtering problem was considered in [6] for systems with

Manuscript received May 17, 1996; revised November 14, 1996. This work
was supported by the Alexander von Humboldt Foundation of Germany and
the National Natural Science Foundation of P.R. China.

Z. Wang was with the Department of Automatic Control, Nanjing University
of Science and Technology, Nanjing 210094, P.R. China. He is now with
the Automatic Control Laboratory, Faculty of Electrical Engineering, Ruhr-
University Bochum, D-44780 Bochum, Germany.

Z. Guo is with the Department of Automatic Control, Nanjing University
of Science and Technology, Nanjing 210094, P.R. China.

H. Unbehauen is with the Automatic Control Laboratory, Faculty of Elec-
trical Engineering, Ruhr-University Bochum, D-44780 Bochum, Germany.

Publisher Item Identifier S 0018-9286(97)07638-1.

0018–9286/97$10.00 1997 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on March 19, 2009 at 11:49 from IEEE Xplore.  Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1432 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 10, OCTOBER 1997

bounded parameter uncertainty only in the state matrix. Discrete-
time filters that minimize a bound on the variance of the estimation
error while satisfying a prescribedH1 performance were developed
in [2], and the same problem was studied for uncertain systems in [3].
Furthermore, Xieet al. [8], [9] was concerned with the problem of
Kalman filter design for the system subjected to time-varying norm-
bounded parameter uncertainty in both the state and measurement
matrices. It should be pointed out that the key idea of [3], [6], [8], and
[9] is actually the design of a filter which provides an upper bound
on the variance of the filtering error for all admissible parameter
uncertainties; but this upper bound is notprespecified.

However, in many engineering applications, such as tracking of
maneuvering target and recognition of flight paths from multiple
sources, the performance requirements of state estimation are usually
describeddirectly in terms of the upper bounds on the steady-state
estimation error variances. This class of state estimation problems is
valuable for both theory and applications. Traditional state estimation
methods are often very difficult to solve for these problems. For in-
stance, the theory of weighted least squares estimation [7] minimizes
a weighted scalar sum of the error variances of the state estimation,
but minimizing a scalar sum does not ensure that the multiple variance
requirements will be satisfied. For the specified individual variance
constraint on each state, this approach cannot guarantee the existence
of the weight which satisfies desired requirements.

A new state estimation approach called error covariance assignment
(ECA) theory was first proposed in [10] and then extended to the
nonlinear case [5], [11]. This theory provides an alternative, more
straightforward technique to meet the prespecified estimation error
variance constraints. The main idea is to design a filter which directly
assigns the prespecified steady-state estimation error covariance.
However, there are few papers developing the robust estimation
technique for uncertain systems subject to the simultaneous achieve-
ment of error variance upper-bound constraint andH1 disturbance
attenuation constraint. This motivates the research of robust state
estimation for uncertain discrete-time systems with prespecifiedH1

norm and error variance upper-bound constraints. To this end, we
point out that the problem considered in the present paper is different
from that in [3], [6], [8], and [9].

The present paper will study the problem of theH1 norm and
the variance-constrained state estimator design for uncertain linear
discrete-time systems. The parametric uncertainty is assumed to
be time-invariant norm-bounded and appears in both the state and
measurement matrices. The aim of this problem is the design of
a robust state estimator such that, for all admissible measurable
uncertainties, the variance of the estimation error of each state is not
more than the individual prespecified value, and the transfer function
from disturbances to error state outputs satisfies the prespecifiedH1

norm upper-bound constraint, simultaneously. It will be shown that
the addressed problem can be converted into a problem of solving
algebraic matrix inequalities, and then both the existence conditions
and the explicit expression of desired estimators will be derived.
This design methodology will be applied to a simple example which
demonstrates various aspects of theoretical results.

II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider the following class of uncertain discrete-time observ-
able dynamic systems [2]:

x(k + 1) = (A +�A)x(k) +D1w(k) (1)

and the measurement equation

y(k) = (C +�C)x(k) +D2w(k) (2)

where x is an n-dimensional state vector,y is a p-dimensional
measured output vector, andA;C;D1; andD2 are known constant
matrices.w(k) is a zero mean Gaussian white noise sequence with
covarianceI > 0: The initial statex(0) has the meanx(0) and
covarianceP (0); and is uncorrelated withw(k): �A and�C are
perturbation matrices which represent parametric uncertainties and
are assumed to be of the time-invariant form [6], [8], [9]

�A

�C
=

M1

M2

FN (3)

whereF 2 Ri�j is a measurable perturbation matrix which satisfies

FF
T � I (4)

and M1;M2 (M2 is full row rank), andN are known constant
matrices of appropriate dimensions which specify how the elements
of the nominal matricesA and C are affected by the uncertain
parameters inF: �A and �C are said to be admissible if both
(3) and (4) hold.

When the perturbations�A and �C are measured, the state
estimation vector̂x(k + 1) satisfies the following linear full-order
filter:

x̂(k + 1) = (A+�A)x̂(k) +K[y(k)� (C +�C)x̂(k)] (5)

whose estimation error covariance in the steady state is defined as

P := lim
k!1

P (k) := lim
k!1

Efe(k)eT (k)g

e(k) =x(k)� x̂(k) (6)

wheree(k) denotes the error state. Then, it is easy to obtain that

e(k + 1)=[A +�A�K(C +�C)]e(k) + (D1 �KD2)w(k) (7)

and

P (k + 1) = [A +�A�K(C +�C)]

� P (k)[A+�A�K(C +�C)]
T

+ (D1 �KD2)(D1 �KD2)
T
: (8)

Define the filtering matrixAf = A +�A�K(C +�C): If Af

is Schur stable (i.e., the poles ofAf are all within the unit disk) for
all admissible�A and�C; then in the steady state, the estimation
error covarianceP satisfies

P = AfPA
T
f + (D1 �KD2)(D1 �KD2)

T (9)

whereP = P T > 0:

Our objective in this paper is to deal with the gain-scheduled
filtering problem, i.e., design a filter gainK such that, for all
admissible measurable perturbations�A and �C; the following
three requirements aresimultaneouslysatisfied.

1) The filtering matrixAf = A + �A � K(C + �C) remains
Schur stable.

2) The steady-state error covarianceP meets

[P ]ii � �
2

i ; i = 1; 2; � � � ; n (10)

where [P ]ii means theith diagonal element ofP , i.e., the
steady-state variance ofith state.�2i (i = 1; 2; � � � ; n) denote
the prespecified steady-state error estimation variance con-
straint on ith state and can be determined by the practical
performance requirements.

3) The H
1

norm of the transfer functionH(z) = L(zIn �
Af )

�1(D1 � KD2) from disturbancesw(k) to error state
outputsLe(k) satisfies the constraint

jjH(z)jj
1
� � (11)
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whereL is the known error state output matrix, and

jjH(z)jj1 = sup
�2[0;2�]

�max[H(e
j�
)]

and�max[�] denotes the largest singular value of[�]; and� is
a given positive constant.

III. M AIN RESULTS AND PROOFS

In this section a solution to the robustH1 norm and variance-
constrained state estimation problem formulated in the previous
section will be obtained using an algebraic matrix inequality ap-
proach.

The following lemma is useful in the proof of main results.
Lemma 1: Let Q be a positive definite matrix and"> 0 be

a positive scalar such that"NQNT <I: Define Ac :=A �
KC;�Ac :=�A � K�C = (M1 � KM2)FN: Then for all
admissible�A and�C; we have

(Ac +�Ac)Q(Ac +�Ac)
T �AcQA

T
c

� AcQN
T
("
�1
I �NQN

T
)
�1
NQA

T
c

+ "
�1

(M1 �KM2)(M1 �KM2)
T
: (12)

Proof: It is clear thatAf = A �KC + (M1 �KM2)FN =

Ac + �Ac: Define

:= [AcQN
T
("
�1
I �NQN

T
)
�1=2 � (M1 �KM2)

� F ("�1I �NQN
T
)
1=2

]:

Note thatFFT � I; then

0 ���
T
= AcQN

T
("
�1
I �NQN

T
)
�1
NQA

T
c

�AcQN
T
F

T
(M1 �KM2)

T � (M1 �KM2)

� FNQAT
c + (M1 �KM2)F ("

�1
I �NQN

T
)

� F T
(M1 �KM2)

T

=AcQN
T
("
�1
I �NQN

T
)
�1
NQA

T
c

� [AcQ(�Ac)
T
+ (�Ac)QA

T
c + (�Ac)Q(�Ac)

T
]

+ "
�1

(M1 �KM2)FF
T
(M1 �KM2)

T

�AcQN
T
("
�1
I �NQN

T
)
�1
NQA

T
c

� [(Ac +�Ac)Q(Ac +�Ac)
T �AcQA

T
c ]

+ "
�1

(M1 �KM2)(M1 �KM2)
T

and (12) follows immediately.
Prior to introducing our main results, we now present an important

theorem which plays a key role for solving the robust variance-
constrainedH2=H1 estimation problem.

Theorem 1: If there exist a filtering gainK; a positive scalar"> 0;

and a positive definite matrixQ 2 Rn�n such that

1) "NQN
T
<I; LQL

T
<�

2
I (13)

2) D1 �KD2 is full row rank (14)

3) Q =(A�KC)R(A�KC)
T
+ (D1 �KD2)

� (D1 �KD2)
T
+ "

�1
(M1 �KM2)

� (M1 �KM2)
T (15)

where R :=Q + QNT ("�1I � NQNT )�1NQ + QLT (�2I �
LQLT )�1LQ; then for all admissible perturbations�A and �C;

we have the following conclusions.

1) The filtering matrixAf is asymptotically stable.
2) The steady-state error covarianceP exists and satisfiesP � Q:

3) jjH(z)jj1 � �; whereH(z) is defined in (11).

Proof of 1): Let there exist"> 0; Q> 0; and K such that
(13)–(15) hold. Define

	 :=Ac[Q+QN
T
("
�1
I �NQN

T
)
�1
NQ]A

T
c

+ "
�1

(M1 �KM2)(M1 �KM2)
T � (Ac +�Ac)

�Q(Ac +�Ac)
T

then Lemma 1 shows that	 � 0: Using the definition of	; (15)
can be rewritten as

Q =(Ac +�Ac)Q(Ac +�Ac)
T
+ [AcQL

T

� (�2I � LQL
T
)
�1
LQA

T
c + (D1 �KD2)

� (D1 �KD2)
T
+	]: (16)

Since the matrix(D1�KD2)(D1�KD2)
T is full row rank, then

(16) implies that there exists a positive definite matrixQ> 0 such
that Q>AfQA

T
f ; and the Schur stability ofAf = Ac + �Ac is

guaranteed by the discrete Lyapunov stability theory.
The proofs of Conclusions 2) and 3) are completely analogous to

the proofs of Lemma 2.1 or Lemma 5.1 of Haddadet al. [2].
Remark 1: The upper bounds on the error covariance andH1

performance given by (13)–(15) may be conservative mainly because
of the introduction of additional matrix	> 0: Noting that	> 0

depends directly on the parameter"> 0; we can reduce the conser-
vative upper bounds by the appropriate selection of"> 0 which can
be done by using the Matlab LMI tool [8]. The detailed discussion
on the choice of"> 0 can be found in [8] and [9].

Remark 2: It should be pointed out that (14) in Theorem 1 is used
only to prove Conclusion 1). Rather, if possible, it suffices to check
the robust stability of time-invariant matrixAf directly.

Remark 3: Theorem 1 shows that the robust stability constraint on
the filtering process and theH1 constraint on estimation error are
automatically enforced when a positive definite solution to (13)–(15)
is known to exist. Furthermore, all such solutions provide upper
bounds for theH2-estimation errorjjH(z)jj22: In [2], [8], and related
papers, the upper bound on the error covariance was minimized,
and the desired estimator is usuallyunique. In the present paper,
however, this upper bound is required to satisfy the prespecified
constraint which must not be minimal but meets the engineering
requirements. In this case, the resulting estimator may be a large
set, and the design freedom can be exploited to achieve the expected
multiple objectives (e.g., robustness, transient behavior on filtering
process,H1 requirement, fault-tolerant property, etc.). To this end,
the variance-constrained robustH2=H1-estimation problem can be
recast as an auxiliary matrix assignment problem which is stated in
the next remark.

Remark 4: By using Theorem 1, we can assign a desired value to
the positive definite matrixQ; such that this matrixQ meets

[Q]ii � �
2
i ; i = 1; 2; � � � ; n (17)

and find the set of Kalman filter gainK which satisfies (13)–(15)
for the specifiedQ: If such a gain exists and can be obtained, then
from Theorem 1, we will have the following conclusions: 1)Af

is robustly stable for admissible perturbations; 2)[P ]ii � [Q]ii �
�2i ; i = 1; 2; � � � ; n; and 3) jjH(z)jj1 � �: Hence, the variance-
constrained robust filtering gain design task will be accomplished,
and the problem addressed in Section II can be converted to such an
auxiliary “matrix assignment” problem.

To make the problem more tractable, we give the following
definition.

Definition 1: Given are a positive definite matrixQ> 0 and a
positive scalar"> 0 which meet (13) and (17). The pairQ> 0; "> 0

is calledassignableif there exists a set of filtering gainK such that
(15) has the positive definite solution(Q; "):
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Clearly, if the filtering gainK which achieves the assignable pair
(Q; ") can be designed and this filtering gain also meets (14), the
problem addressed in this paper will be solved. In what follows,
our purpose is to derive the necessary and sufficient conditions for
the existence of assignable pair(Q; ") and then to characterize all
filtering gains which achieve this assignable pair(Q; "):

We can rearrange (15) as follows:

Q =K(CRC
T
+D2D

T

2 + "
�1
M2M

T

2 )K
T

�K(CRA
T
+D2D

T

1 + "
�1
M2M

T

1 )

� (CRA
T
+D2D

T

1 + "
�1
M2M

T

1 )
T
K
T

+ ARA
T
+D1D

T

1 + "
�1
M1M

T

1 : (18)

For the purpose of simplicity, we make the following definitions:

X =CRC
T
+D2D

T

2 + "
�1
M2M

T

2 (19)

Y =CRA
T
+D2D

T

1 + "
�1
M2M

T

1 (20)

Z =ARA
T
+D1D

T

1 + "
�1
M1M

T

1 (21)

and (18) can be expressed in the following simple form:

Q = KXK
T
�KY � Y

T
K
T
+ Z: (22)

Note thatM2 is full row rank, then the matrixX is positive definite,
and (22), or (15), can be equivalently written as follows:

Q� Z + Y
T
X
�1
Y

= (�KX
1=2

+ Y
T
X
�1=2

)(�KX
1=2

+ Y
T
X
�1=2

)
T
: (23)

Since the dimension of filter gainK is n � p and p � n; then
from (23), there exists a solutionK to (18) (i.e., the pair(Q; ") is
assignable) if and only if the left side of (23) is positive semidefinite
and is of maximum rankp (in this case, both sides of (23) have
admissible ranks). This leads to the following theorem which presents
the existence conditions of an assignable pair(Q; "):

Theorem 2: Given are the desired steady-state error variance con-
straints�2i ; i = 1; 2; � � � ; n; and the desiredH1 norm constraint�:
The pairQ> 0; "> 0 satisfying (13) and (17) is assignable if and
only if the following algebraic matrix inequality holds:

Q� Z + Y
T
X
�1
Y � 0 (24)

and the left side of (24) is of maximum rankp:
Furthermore, we give the algebraic parameterization of all filtering

gains related to the assignable pair(Q; "):

Theorem 3: Suppose that the prespecified positive definite matrix
Q> 0 and positive scalar"> 0 satisfying (13) and (17) is assignable,
i.e., (24) is met. The desired filtering gains can be expressed as

� = fK: K = Y
T
X
�1

� TUX
�1=2

g (25)

whereT 2 Rn�p is the square root ofQ�Z+Y TX�1Y;U 2 Rp�p

is arbitrary orthogonal,X; Y; Z are determined by (19)–(21), andR
is defined in Theorem 1. Furthermore, for the prespecified steady-
state error variance constraints�2i ; (i = 1; 2; � � � ; n) and the desired
H1-norm constraint�, if a pair Q> 0; "> 0 meets the conditions
of Theorem 2 and the matrixK obtained by (25) also satisfies
(14), then this gain matrixK is just the desired robustH2=H1
variance-constrained estimator.

Proof: From (23) and the definition ofT; we have

Q� Z + Y
T
X
�1
Y

= TT
T

= (�KX
1=2

+ Y
T
X
�1=2

)(�KX
1=2

+ Y
T
X
�1=2

)
T (26)

or equivalently

TU = �KX
1=2

+ Y
T
X
�1=2

and (25) follows immediately. The second result of this theorem is
very accessible. This proves Theorem 3.

Remark 5: Though the necessary and sufficient conditions for
the assignability of the pair(Q; ") are easy to test, in practical
applications, however, the designers often wish to construct the
appropriate assignablepair (Q; ") directly from (24) subjected to the
restrictions (13) and (17), then easily get the desired filtering gains
satisfying (14) from (25). The conditions on an assignable pair(Q; ")

are actually some nonlinear matrix inequalities which characterize the
desired solutions. For relatively lower order models, these matrix
inequalities can be treated possibly by the direct parameterized
method proposed in [12]. Furthermore, the local numerical searching
algorithms [13], [14] can be utilized to deal with higher order models.
We point out, however, that the proof for the guaranteed convergence
of an efficient algorithm is still an open problem and has been the
subject of future research.

IV. NUMERICAL EXAMPLE

To illustrate the design approach of the present paper, we consider
an uncertain linear continuous-time stochastic system described by
(1)–(3) where the parameters are as follows:

A =
1 1

0 1
; C =

1 0

0 1

D1 =
0:8 0

0 0:8
; D2 =

�0:01137 �0:22226

0:16955 �0:41105

�A =M1FN =
0:01 0

0 0:01

sin� 0

0 sin�

1 0

0 1

�C =M2FN =
0:005 0

0 0:005

sin� 0

0 sin�

1 0

0 1
:

It is desired to design robust filtering gains such that 1) the filtering
matrixAf = A�KC+�A�K�C is robustly stable; 2) the steady-
state covarianceP exists and[P ]11 � 0:62; [P ]22 � 0:51; and 3) the
transfer functionH(s) from disturbancesw(k) to error-state outputs
Le(k) satisfies the constraintjjH(z)jj1 � 0:85; whereL = I2:

Now, we assume that the positive definite matrixQ has the form

Q =
q11 q12
q12 q22

and then by substituting parametersQ and" into (24) and using the
approach discussed in previous section, we can choose an assignable
pair Q> 0 and "> 0 as follows:

Q =
0:5874 0

0 0:4355
; " = 0:5:

SubstitutingQ; " andU = I2 into (25) yields a desired filtering
gain which also satisfies (14), that is

K =
0:13653 0:91905

�0:11171 0:28584

and it is not difficult to obtain the values of the maximumH1
norm of the error transfer function and of the maximum variance of
the estimation error (over all admissible uncertainty) respectively as
0.7962 and 0.4236, 0.2016. Clearly, the prespecified robust stability
constraint on filtering process, theH1-norm constraint on the error
transfer function, and the variance constraint on estimation error are
all met.

V. CONCLUSIONS

This paper has studied the problem ofH1-norm and variance-
constrained state estimator designs for linear discrete-time systems
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with parameter uncertainties in both the state and measurement ma-
trices. An algebraic matrix inequality approach has been proposed to
solve the above problem. The existence conditions and the analytical
expression of desired estimators have been characterized. Further
study will focus on the variance-constrained multiobjective (e.g., ro-
bustness, transient behavior,H1 requirement, fault-tolerant property,
etc.) state estimation for various systems such as continuous-time,
discrete-time, sampled-data, and stochastic parameter systems.
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A Nonparametric Polynomial Identification
Algorithm for the Hammerstein System

Zi-Qiang Lang

Abstract—Almost all existing Hammerstein system nonparametric iden-
tification algorithms can recover the unknown system nonlinear element
up to an additive constant, and one functional value of the nonlinearity is
usually assumed to be known to make the constant solvable. To overcome
this defect, in this paper, a new nonparametric polynomial identification
algorithm for the Hammerstein system is proposed which extends the idea
in the author’s previous work on the Hammerstein system identification
to a more general and practical case, where no functional value of the
system nonlinearity is knowna priori. Convergence and convergence rates
in both uniform and global senses are established, and simulation studies
demonstrate the effectiveness and advantage of the new algorithm.

Index Terms—Convergence, convergence rates, Hammerstein model,
nonlinear systems, nonparametric identification.

I. INTRODUCTION

The Hammerstein system is a typical nonlinear model which
consists of a nonlinear memoryless element followed by a linear
dynamical subsystem. In order to identify the system, initially the
proposed algorithms assumed that the unknown memoryless nonlinear
characteristic is a polynomial of a finite and known order. Clearly,
these algorithms do not converge for nonpolynomial characteristics.
Considering that the nonlinear element could be regarded as a
regression function, a number of nonparametric identification meth-
ods were then proposed [1]–[4]. However, although these methods
require almost no prior knowledge of the system nonlinearity and
can obtain nonparametric estimates of the nonlinear element that
converge to the real characteristic quite well, the complex forms
of the nonlinear element nonparametric estimates make the obtained
models hard to be applied in practice. To overcome this problem,
some nonparametric polynomial identification algorithms have been
developed by which the obtained estimates of the nonlinear element
have a polynomial form [5]–[7]. But, as summarized in [4], almost
all having proposed Hammerstein system nonparametric identification
algorithms can only recover the unknown system nonlinearity up to
an additive constant, and one functional value of the nonlinearity
is usually assumed to be known to make the constant solvable.
This is obviously a disadvantage because some exact information
about identified systems is still required. Recently, based on the
solution to an integration equation by Hermit polynomial expansion,
a nonparametric orthogonal series estimate of the Hammerstein
system nonlinear element has been proposed [9]. Using this method,
the defect might be overcome, but the obtained estimate of the
nonlinearity can only converge in the mean integrated square error
(MISE) sense; it cannot approximate the nonlinearity uniformly well.

In this paper, a new nonparametric polynomial identification al-
gorithm for the Hammerstein system is proposed which extends
the idea presented in the author’s previous work [7] to a more
general and practical case, where no functional value of the system
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