1,651 research outputs found
Quantum data hiding with spontaneous parameter down-conversion
Here we analyze the practical implication of the existing quantum data hiding
protocol with Bell states produced with optical downconverter. We show that the
uncertainty for the producing of the Bell states with spontaneous parameter
down-conversion should be taken into account, because it will cause serious
trouble to the hider encoding procedure. A set of extended Bell states and a
generalized Bell states analyzer are proposed to describe and analyze the
possible states of two photons distributing in two paths. Then we present a
method to integrate the above uncertainty of Bell states preparation into the
dating hiding procedure, when we encode the secret with the set of extended
Bell states. These modifications greatly simplify the hider's encoding
operations, and thus paves the way for the implementation of quantum data
hiding with present-day quantum optics.Comment: 4 pages, 1 figure, adding some analyse for security proof, to be
appear in Phys. Rev.
A novel quantum key distribution scheme with orthogonal product states
The general conditions for the orthogonal product states of the multi-state
systems to be used in quantum key distribution (QKD) are proposed, and a novel
QKD scheme with orthogonal product states in the 3x3 Hilbert space is
presented. We show that this protocol has many distinct features such as great
capacity, high efficiency. The generalization to nxn systems is also discussed
and a fancy limitation for the eavesdropper's success probability is reached.Comment: 4 Pages, 3 Figure
Efficient quantum key distribution scheme with nonmaximally entangled states
We propose an efficient quantum key distribution scheme based on
entanglement. The sender chooses pairs of photons in one of the two equivalent
nonmaximally entangled states randomly, and sends a sequence of photons from
each pair to the receiver. They choose from the various bases independently but
with substantially different probabilities, thus reducing the fraction of
discarded data, and a significant gain in efficiency is achieved. We then show
that such a refined data analysis guarantees the security of our scheme against
a biased eavesdropping strategy.Comment: 5 Pages, No Figur
Faithful remote state preparation using finite classical bits and a non-maximally entangled state
We present many ensembles of states that can be remotely prepared by using
minimum classical bits from Alice to Bob and their previously shared entangled
state and prove that we have found all the ensembles in two-dimensional case.
Furthermore we show that any pure quantum state can be remotely and faithfully
prepared by using finite classical bits from Alice to Bob and their previously
shared nonmaximally entangled state though no faithful quantum teleportation
protocols can be achieved by using a nonmaximally entangled state.Comment: 6 page
Local channels preserving maximal entanglement or Schmidt number
Maximal entanglement and Schmidt number play an important role in various
quantum information tasks. In this paper, it is shown that a local channel
preserves maximal entanglement state(MES) or preserves pure states with Schmidt
number ( is a fixed integer) if and only if it is a local unitary
operation.Comment: 10 page
Controlled order rearrangement encryption for quantum key distribution
A novel technique is devised to perform orthogonal state quantum key
distribution. In this scheme, entangled parts of a quantum information carrier
are sent from Alice to Bob through two quantum channels. However before the
transmission, the orders of the quantum information carrier in one channel is
reordered so that Eve can not steal useful information. At the receiver's end,
the order of the quantum information carrier is restored. The order
rearrangement operation in both parties is controlled by a prior shared control
key which is used repeatedly in a quantum key distribution session.Comment: 5 pages and 2 figure
A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block
A protocol for quantum secure direct communication using blocks of EPR pairs
is proposed. A set of ordered EPR pairs is used as a data block for sending
secret message directly. The ordered EPR set is divided into two particle
sequences, a checking sequence and a message-coding sequence. After
transmitting the checking sequence, the two parties of communication check
eavesdropping by measuring a fraction of particles randomly chosen, with random
choice of two sets of measuring bases. After insuring the security of the
quantum channel, the sender, Alice encodes the secret message directly on the
message-coding sequence and send them to Bob. By combining the checking and
message-coding sequences together, Bob is able to read out the encoded messages
directly. The scheme is secure because an eavesdropper cannot get both
sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev
Enhanced iron and zinc accumulation in genetically engineered wheat plants using sickle alfalfa (Medicago falcata L.) ferritin gene
Iron deficiency is the most common nutritional disorder, affecting over 30% of the world’s human population. The primary method used to alleviate this problem is nutrient biofortification of crops so as to improve the iron content and its availability in food sources. The over-expression of ferritin is an effective method to increase iron concentration in transgenic crops. For the research reported herein, sickle alfalfa (Medicago falcata L.) ferritin was transformed into wheat driven by the seed-storage protein glutelin GluB-1 gene promoter. The integration of ferritin into the wheat was assessed by PCR, RT-PCR and Western blotting. The concentration of certain minerals in the transgenic wheat grain was determined by inductively coupled plasma-atomic emission spectrometry, the results showed that grain Fe and Zn concentration of transgenic wheat increased by 73% and 44% compared to nontransformed wheat, respectively. However, grain Cu and Cd concentration of transgenic wheat grain decreased significantly in comparison with non-transformed wheat. The results suggest that the over-expression of sickle alfalfa ferritin, controlled by the seed-storage protein glutelin GluB-1 gene promoter, increases the grain Fe and Zn concentration, but also affects the homeostasis of other minerals in transgenic wheat grain
Natural relations among physical observables in the neutrino mass matrix
We find all possible relations among physical observables arising from
neutrino mass matrices that describe in a natural way the currently observed
pattern (tan_23 and tan_12 large, dm^2_Sun/dm^2_Atm and tan_13 small) in terms
of a minimum number of parameters. Natural here means due only to the relative
smallness (vanishing) of some parameters in the relevant lagrangian, without
special relations or accidental cancellations among them.Comment: 14 pages, 1 eps figur
- …