530 research outputs found

    A precise determination of the top-quark pole mass

    Full text link
    The Principle of Maximum Conformality (PMC) provides a systematic way to eliminate the renormalization scheme and renormalization scale uncertainties for high-energy processes. We have observed that by applying PMC scale-setting, one obtains comprehensive and self-consistent pQCD predictions for the top-quark pair total cross-section and the top-quark pair forward-backward asymmetry in agreement with the measurements at the Tevatron and LHC. As a step forward, in the present paper, we determine the top-quark pole mass via a detailed comparison of the top-quark pair cross-section with the measurements at the Tevatron and LHC. The results for the top-quark pole mass are mt=174.6−3.2+3.1m_t=174.6^{+3.1}_{-3.2} GeV for the Tevatron with S=1.96\sqrt{S}=1.96 TeV, mt=173.7±1.5m_t=173.7\pm1.5 GeV and 174.2±1.7174.2\pm1.7 GeV for the LHC with S=7\sqrt{S} = 7 TeV and 88 TeV, respectively. Those predictions agree with the average, 173.34±0.76173.34\pm0.76 GeV, obtained from various collaborations via direct measurements. The consistency of the pQCD predictions using the PMC with all of the collider measurements at different energies provides an important verification of QCD.Comment: 10 pages, 6 figures. Revised version to be published in Eur.Phys.J.

    Editorial of the Special Issue: Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer

    Get PDF
    Oncolytic viruses (OVs), either occurring naturally or through genetic engineering, can selectively infect, replicate in, and kill cancer cells, while leaving normal cells (almost) unharmed [...

    Characteristics and biodiversity of endophytic phosphorus- and potassium-solubilizing bacteria in Moso Bamboo (Phyllostachys edulis)

    Get PDF
    Endophytic phosphorus- and potassium-solubilizing bacteria were screened from the root, rhizome, stem, and leaves of Moso Bamboo, and their diversity was analyzed using their 16S rDNA sequences. Twenty endophytic phosphorus and potassium-solubilizing bacteria were screened from 82 bamboo plants, among which the CT-B09-2, WYS-A01-1 and JL-B06 had higher activities in decomposing organophosphates. The three species showed a decomposition diameter/colony diameter (D/d) of 5.05, 4.19 and 2.95, respectively, and a solubilizing activity of 81.77 mg/L, 77.85 mg/L and 63.69 mg/L, respectively. JL-B06, WYS-A01-1 and CT-B09-2 had higher activities in decomposing inorganic phosphorus, with a decomposition diameter/colony diameter (D/d) of 2.34, 2.12 and 1.82, respectively, and a solubilizing activity of 30.58 mg/L, 38.89 mg/L and 48.35 mg/L, respectively. CT-B21, WYS-A03-1 and JL-B06 had higher activities in decomposing potassium, with a decomposition diameter/colony diameter (D/d) of 3.37, 4.84 and 4.33, respectively, and a solubilizing activity of 2.81 mg/L, 2.54 mg/L and 2.46 mg/L, respectively. The 16S rDNA sequence analysis showed that the 20 phosphorus- and potassium-solubilizing bacteria belong to 14 species from 10 genera, and mainly consist of Alcaligenes spp., Enterobacter spp. and Bacillus spp. Our results demonstrate the abundant diversity of endophytic phosphorus- and potassiumsolubilizing bacteria in Moso Bamboo

    Bi- and Tri-Specific T Cell Engager-Armed Oncolytic Viruses: Next-Generation Cancer Immunotherapy

    Get PDF
    Oncolytic viruses (OVs) are potent anti-cancer biologics with a bright future, having substantial evidence of efficacy in patients with cancer. Bi- and tri-specific antibodies targeting tumor antigens and capable of activating T cell receptor signaling have also shown great promise in cancer immunotherapy. In a cutting-edge strategy, investigators have incorporated the two independent anti-cancer modalities, transforming them into bi- or tri-specific T cell engager (BiTE or TriTE)-armed OVs for targeted immunotherapy. Since 2014, multiple research teams have studied this combinatorial strategy, and it showed substantial efficacy in various tumor models. Here, we first provide a brief overview of the current status of oncolytic virotherapy and the use of multi-specific antibodies for cancer immunotherapy. We then summarize progress on BiTE and TriTE antibodies as a novel class of cancer therapeutics in preclinical and clinical studies, followed by a discussion of BiTE- or TriTE-armed OVs for cancer therapy in translational models. In addition, T cell receptor mimics (TCRm) have been developed into BiTEs and are expected to greatly expand the application of BiTEs and BiTE-armed OVs for the effective targeting of intracellular tumor antigens. Future applications of such innovative combination strategies are emerging as precision cancer immunotherapies

    Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose

    Get PDF
    Background: Lignocellulosic biomass is one of earth's most abundant resources, and it has great potential for biofuel production because it is renewable and has carbon-neutral characteristics. Lignocellulose is mainly composed of carbohydrate polymers (cellulose and hemicellulose), which contain approximately 75 % fermentable sugars for biofuel fermentation. However, saccharification by cellulases is always the main bottleneck for commercialization. Compared with the enzyme systems of fungi, bacteria have evolved distinct systems to directly degrade lignocellulose. However, most reported bacterial saccharification is not efficient enough without help from additional β-glucosidases. Thus, to enhance the economic feasibility of using lignocellulosic biomass for biofuel production, it will be extremely important to develop a novel bacterial saccharification system that does not require the addition of β-glucosidases. Results: In this study, a new thermophilic bacterium named Ruminiclostridium thermocellum M3, which could directly saccharify lignocellulosic biomass, was isolated from horse manure. The results showed that R. thermocellum M3 can grow at 60 °C on a variety of carbon polymers, including microcrystalline cellulose, filter paper, and xylan. Upon utilization of these substrates, R. thermocellum M3 achieved an oligosaccharide yield of 481.5 ± 16.0 mg/g Avicel, and a cellular β-glucosidase activity of up to 0.38 U/mL, which is accompanied by a high proportion (approximately 97 %) of glucose during the saccharification. R. thermocellum M3 also showed potential in degrading natural lignocellulosic biomass, without additional pretreatment, to oligosaccharides, and the oligosaccharide yields using poplar sawdust, corn cobs, rice straw, and cornstalks were 52.7 ± 2.77, 77.8 ± 5.9, 89.4 ± 9.3, and 107.8 ± 5.88 mg/g, respectively. Conclusions: The newly isolated strain R. thermocellum M3 degraded lignocellulose and accumulated oligosaccharides. R. thermocellum M3 saccharified lignocellulosic feedstock without the need to add β-glucosidases or control the pH, and the high proportion of glucose production distinguishes it from all other known monocultures of cellulolytic bacteria. R. thermocellum M3 is a potential candidate for lignocellulose saccharification, and it is a valuable choice for the refinement of bioproducts
    • …
    corecore