93 research outputs found

    Early Gastric Cancer: Current Advances of Endoscopic Diagnosis and Treatment

    Get PDF
    Endoscopy is a major method for early gastric cancer screening because of its high detection rate, but its diagnostic accuracy depends heavily on the availability of endoscopic instruments. Many novel endoscopic techniques have been shown to increase the diagnostic yield of early gastric cancer. With the improved detection rate of EGC, the endoscopic treatment has become widespread due to advances in the instruments available and endoscopist’s experience. The aim of this review is to summarize frequently-used endoscopic diagnosis and treatment in early gastric cancer (EGC)

    Evaluation of six satellite-based terrestrial latent heat flux products in the vegetation dominated Haihe river basin of north China

    Get PDF
    In this study, six satellite-based terrestrial latent heat flux (LE) products were evaluated in the vegetation dominated Haihe River basin of North China. These LE products include Global Land Surface Satellite (GLASS) LE product, FLUXCOM LE product, Penman-Monteith-Leuning V2 (PML_V2) LE product, Global Land Evaporation Amsterdam Model datasets (GLEAM) LE product, Breathing Earth System Simulator (BESS) LE product, and Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD16) LE product. Eddy covariance (EC) data collected from six flux tower sites and water balance method derived evapotranspiration (WBET) were used to evaluate these LE products at site and basin scales. The results indicated that all six LE products were able to capture the seasonal cycle of LE in comparison to EC observations. At site scale, GLASS LE product showed the highest coefficients of determination (R2) (0.58, p 2), followed by FLUXCOM and PML products. At basin scale, the LE estimates from GLASS product provided comparable performance (R2 = 0.79, RMSE = 18.8 mm) against WBET, compared with other LE products. Additionally, there was similar spatiotemporal variability of estimated LE from the six LE products. This study provides a vital basis for choosing LE datasets to assess regional water budget

    Downregulation of nuclear STAT2 protein in the spinal dorsal horn is involved in neuropathic pain following chronic constriction injury of the rat sciatic nerve

    Get PDF
    Regulation of gene transcription in the spinal dorsal horn (SDH) plays a critical role in the pathophysiology of neuropathic pain. In this study, we investigated whether the transcription factor STAT2 affects neuropathic pain and evaluated its possible mechanisms. A proteomic analysis showed that the nuclear fraction of STAT2 protein in the SDH was downregulated after chronic constriction injury of the rat sciatic nerve, which was associated with the development of neuropathic pain. Similarly, siRNA-induced downregulation of STAT2 in the SDH of naïve rats also resulted in pain hypersensitivity. Using RNA-sequencing analysis, we showed that reduction of nuclear STAT2 after chronic constriction injury was associated with increased expression of microglial activation markers, including the class II transactivator and major histocompatibility complex class II proteins. In addition, siRNA-induced downregulation of STAT2 promoted microglial activation and pro-inflammatory cytokine expression in the SDH. Taken together, these results showed that chronic constriction injury caused downregulation of nuclear STAT2 in the SDH, which may result in microglial activation and development of neuropathic pain. Our findings indicate that restoration of nuclear expression of STAT2 could be a potential pathway for the treatment of neuropathic pain

    Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet

    Full text link
    The discovery of magnetism in van der Waals (vdW) materials has established unique building blocks for the research of emergent spintronic phenomena. In particular, owing to their intrinsically clean surface without dangling bonds, the vdW magnets hold the potential to construct a superior interface that allows for efficient electrical manipulation of magnetism. Despite several attempts in this direction, it usually requires a cryogenic condition and the assistance of external magnetic fields, which is detrimental to the real application. Here, we fabricate heterostructures based on Fe3GaTe2 flakes that possess room-temperature ferromagnetism with excellent perpendicular magnetic anisotropy. The current-driven non-reciprocal modulation of coercive fields reveals a high spin-torque efficiency in the Fe3GaTe2/Pt heterostructures, which further leads to a full magnetization switching by current. Moreover, we demonstrate the field-free magnetization switching resulting from out-of-plane polarized spin currents by asymmetric geometry design. Our work could expedite the development of efficient vdW spintronic logic, memory and neuromorphic computing devices

    Machine Learning Empowered Thin Film Acoustic Wave Sensing

    Get PDF
    Thin film based surface acoustic wave (SAW) technology has been extensively explored for physical, chemical and biological sensors. However, these sensors often show inferior performance for a specific sensing in complex environments, as they are affected by multiple influencing parameters and their coupling interferences. To solve these critical issues, we propose a methodology to extract critical information from the scattering parameter and combine machine learning method to achieve multi-parameter decoupling. We used AlScN film-based SAW device as an example, in which highly c-axis orientated and low stress AlScN film was deposited on silicon substrate. The AlScN/Si SAW device showed a Bode quality factor value of 228 and an electro-mechanical coupling coefficient of ~2.3. Two sensing parameters (i.e., ultraviolet or UV and temperature) were chosen for demonstration and the proposed machine-learning method was used to distinguish their influences. Highly precision UV sensing and temperature sensing were independently achieved without their mutual interferences. This work provides an effective solution for decoupling of multi-parameter influences and achieving anti-interference effects in thin film based SAW sensing

    Three Capsular Polysaccharide Synthesis-Related Glucosyltransferases, GT-1, GT-2 and WcaJ, Are Associated With Virulence and Phage Sensitivity of Klebsiella pneumoniae

    Get PDF
    Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (>250 KD), K7(ΔGT-1) and K7(ΔwcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage
    corecore