68,362 research outputs found

    Creating a Chemistry of Sciences with Big Data

    Get PDF

    Identification of N-state spatio-temporal dynamical systems using a polynomial model

    Get PDF
    A multivariable polynomial model is introduced to describe n-state spatio-temporal systems. Based on this model, a new neighbourhood detection and transition rules determination method is proposed. Simulation results illustrate that the new method performs well even when the patterns are corrupted by static and dynamical noise

    A simple scalar coupled map lattice model for excitable media

    Get PDF
    A simple scalar coupled map lattice model for excitable media is intensively analysed in this paper. This model is used to explain the excitability of excitable media, and a Hopf-like bifurcation is employed to study the different spatio-temporal patterns produced by the model. Several basic rules for the construction of these kinds of models are proposed. Illustrative examples demonstrate that the sCML model is capable of generating complex spatiotemporal patterns

    Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires

    Full text link
    It is found that all the zigzag chains except the nonmagnetic (NM) Ni and antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look like a corner-sharing triangle ribbon, and have a lower total energy than the corresponding linear chains. All the 3d transition metals in both linear and zigzag structures have a stable or metastable ferromagnetic (FM) state. The electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and Ni linear chains is close to 90% or above. In the zigzag structure, the AF state is more stable than the FM state only in the Cr chain. It is found that the shape anisotropy energy may be comparable to the electronic one and always prefers the axial magnetization in both the linear and zigzag structures. In the zigzag chains, there is also a pronounced shape anisotropy in the plane perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is a spin-reorientation transition in the FM Fe and Co linear chains when the chains are compressed or elongated. Large orbital magnetic moment is found in the FM Fe, Co and Ni linear chains

    Microscopic origin of light emission in Al_yGa_{1-y}N/GaN superlattice: Band profile and active site

    Get PDF
    We present first-principles calculations of AlGaN/GaN superlattice, clarifying the microscopic origin of the light emission and revealing the effect of local polarization within the quantum well. Profile of energy band and distributions of electrons and holes demonstrate the existence of a main active site in the well responsible for the main band-edge light emission. This site appears at the position where the local polarization becomes zero. With charge injection, the calculated optical spectra show that the broadening of the band gap at the active site leads to the blueshift of emission wavelength
    • …
    corecore