73,745 research outputs found

    Global Hilbert Expansion for the Vlasov-Poisson-Boltzmann System

    Full text link
    We study the Hilbert expansion for small Knudsen number ε\varepsilon for the Vlasov-Boltzmann-Poisson system for an electron gas. The zeroth order term takes the form of local Maxwellian: $ F_{0}(t,x,v)=\frac{\rho_{0}(t,x)}{(2\pi \theta_{0}(t,x))^{3/2}} e^{-|v-u_{0}(t,x)|^{2}/2\theta_{0}(t,x)},\text{\ }\theta_{0}(t,x)=K\rho_{0}^{2/3}(t,x).OurmainresultstatesthatiftheHilbertexpansionisvalidat Our main result states that if the Hilbert expansion is valid at t=0forwell−preparedsmallinitialdatawithirrotationalvelocity for well-prepared small initial data with irrotational velocity u_0,thenitisvalidfor, then it is valid for 0\leq t\leq \varepsilon ^{-{1/2}\frac{2k-3}{2k-2}},where where \rho_{0}(t,x)and and u_{0}(t,x)satisfytheEuler−Poissonsystemformonatomicgas satisfy the Euler-Poisson system for monatomic gas \gamma=5/3$

    Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires

    Full text link
    It is found that all the zigzag chains except the nonmagnetic (NM) Ni and antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look like a corner-sharing triangle ribbon, and have a lower total energy than the corresponding linear chains. All the 3d transition metals in both linear and zigzag structures have a stable or metastable ferromagnetic (FM) state. The electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and Ni linear chains is close to 90% or above. In the zigzag structure, the AF state is more stable than the FM state only in the Cr chain. It is found that the shape anisotropy energy may be comparable to the electronic one and always prefers the axial magnetization in both the linear and zigzag structures. In the zigzag chains, there is also a pronounced shape anisotropy in the plane perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is a spin-reorientation transition in the FM Fe and Co linear chains when the chains are compressed or elongated. Large orbital magnetic moment is found in the FM Fe, Co and Ni linear chains

    An {\it ab initio} study of the magnetic and electronic properties of Fe, Co, and Ni nanowires on Cu(001) surface

    Full text link
    Magnetism at the nanoscale has been a very active research area in the past decades, because of its novel fundamental physics and exciting potential applications. We have recently performed an {\it ab intio} study of the structural, electronic and magnetic properties of all 3dd transition metal (TM) freestanding atomic chains and found that Fe and Ni nanowires have a giant magnetic anisotropy energy (MAE), indicating that these nanowires would have applications in high density magnetic data storages. In this paper, we perform density functional calculations for the Fe, Co and Ni linear atomic chains on Cu(001) surface within the generalized gradient approximation, in order to investigate how the substrates would affect the magnetic properties of the nanowires. We find that Fe, Co and Ni linear chains on Cu(001) surface still have a stable or metastable ferromagnetic state. When spin-orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged, due to the weakness of SOC in 3dd TM chains, whilst significant orbital magnetic moments appear and also are direction-dependent. Finally, we find that the MAE for Fe, and Co remains large, i.e., being not much affected by the presence of Cu substrate.Comment: 4 pages, 2 figure

    Magnetic moment and magnetic anisotropy of linear and zigzag 4{\it d} and 5{\it d} transition metal nanowires: First-principles calculations

    Full text link
    An extensive {\it ab initio} study of the physical properties of both linear and zigzag atomic chains of all 4dd and 5dd transition metals (TM) within the GGA by using the accurate PAW method, has been carried out. All the TM linear chains are found to be unstable against the corresponding zigzag structures. All the TM chains, except Nb, Ag and La, have a stable (or metastable) magnetic state in either the linear or zigzag or both structures. Magnetic states appear also in the sufficiently stretched Nb and La linear chains and in the largely compressed Y and La chains. The spin magnetic moments in the Mo, Tc, Ru, Rh, W, Re chains could be large (≥\geq1.0 μB\mu_B/atom). Structural transformation from the linear to zigzag chains could suppress the magnetism already in the linear chain, induce the magnetism in the zigzag structure, and also cause a change of the magnetic state (ferromagnetic to antiferroamgetic or vice verse). The calculations including the spin-orbit coupling reveal that the orbital moments in the Zr, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt chains could be rather large (≥\geq0.1 μB\mu_B/atom). Importantly, large magnetic anisotropy energy (≥\geq1.0 meV/atom) is found in most of the magnetic TM chains, suggesting that these nanowires could have fascinating applications in ultrahigh density magnetic memories and hard disks. In particular, giant magnetic anisotropy energy (≥\geq10.0 meV/atom) could appear in the Ru, Re, Rh, and Ir chains. Furthermore, the magnetic anisotropy energy in several elongated linear chains could be as large as 40.0 meV/atom. A spin-reorientation transition occurs in the Ru, Ir, Ta, Zr, La and Zr, Ru, La, Ta and Ir linear chains when they are elongated. Remarkably, all the 5dd as well as Tc and Pd chains show the colossal magnetic anisotropy (i.e., it is impossible to rotate magnetization into certain directions). Finally, the electronic band structure and density of states of the nanowires have also been calculated in order to understand the electronic origin of the large magnetic anisotropy and orbital magnetic moment as well as to estimate the conduction electron spin polarization.Comment: To appear in Phys. Rev.
    • …
    corecore