We study the Hilbert expansion for small Knudsen number ε for the
Vlasov-Boltzmann-Poisson system for an electron gas. The zeroth order term
takes the form of local Maxwellian: $ F_{0}(t,x,v)=\frac{\rho_{0}(t,x)}{(2\pi
\theta_{0}(t,x))^{3/2}} e^{-|v-u_{0}(t,x)|^{2}/2\theta_{0}(t,x)},\text{\
}\theta_{0}(t,x)=K\rho_{0}^{2/3}(t,x).OurmainresultstatesthatiftheHilbertexpansionisvalidatt=0forwell−preparedsmallinitialdatawithirrotationalvelocityu_0,thenitisvalidfor0\leq t\leq \varepsilon
^{-{1/2}\frac{2k-3}{2k-2}},where\rho_{0}(t,x)and u_{0}(t,x)satisfytheEuler−Poissonsystemformonatomicgas\gamma=5/3$