research

Global Hilbert Expansion for the Vlasov-Poisson-Boltzmann System

Abstract

We study the Hilbert expansion for small Knudsen number ε\varepsilon for the Vlasov-Boltzmann-Poisson system for an electron gas. The zeroth order term takes the form of local Maxwellian: $ F_{0}(t,x,v)=\frac{\rho_{0}(t,x)}{(2\pi \theta_{0}(t,x))^{3/2}} e^{-|v-u_{0}(t,x)|^{2}/2\theta_{0}(t,x)},\text{\ }\theta_{0}(t,x)=K\rho_{0}^{2/3}(t,x).OurmainresultstatesthatiftheHilbertexpansionisvalidat Our main result states that if the Hilbert expansion is valid at t=0forwellpreparedsmallinitialdatawithirrotationalvelocity for well-prepared small initial data with irrotational velocity u_0,thenitisvalidfor, then it is valid for 0\leq t\leq \varepsilon ^{-{1/2}\frac{2k-3}{2k-2}},where where \rho_{0}(t,x)and and u_{0}(t,x)satisfytheEulerPoissonsystemformonatomicgas satisfy the Euler-Poisson system for monatomic gas \gamma=5/3$

    Similar works

    Full text

    thumbnail-image

    Available Versions