66,826 research outputs found
From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality
By means of Dirac procedure, we re-examine Yang's quantized space-time model,
its relation to Snyder's model, the de Sitter special relativity and their
UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a
complete Yang model at both classical and quantum level can be presented and
there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge
Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires
It is found that all the zigzag chains except the nonmagnetic (NM) Ni and
antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look
like a corner-sharing triangle ribbon, and have a lower total energy than the
corresponding linear chains. All the 3d transition metals in both linear and
zigzag structures have a stable or metastable ferromagnetic (FM) state. The
electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and
Ni linear chains is close to 90% or above. In the zigzag structure, the AF
state is more stable than the FM state only in the Cr chain. It is found that
the shape anisotropy energy may be comparable to the electronic one and always
prefers the axial magnetization in both the linear and zigzag structures. In
the zigzag chains, there is also a pronounced shape anisotropy in the plane
perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in
the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is
a spin-reorientation transition in the FM Fe and Co linear chains when the
chains are compressed or elongated. Large orbital magnetic moment is found in
the FM Fe, Co and Ni linear chains
A non-variational approach to nonlinear stability in stellar dynamics applied to the King model
In previous work by Y. Guo and G. Rein, nonlinear stability of equilibria in
stellar dynamics, i.e., of steady states of the Vlasov-Poisson system, was
accessed by variational techniques. Here we propose a different,
non-variational technique and use it to prove nonlinear stability of the King
model against a class of spherically symmetric, dynamically accessible
perturbations. This model is very important in astrophysics and was out of
reach of the previous techniques
Recommended from our members
Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems
Companding transform is an efficient and simple method to reduce the Peak-to-Average Power Ratio (PAPR) for Multi-Carrier Modulation (MCM) systems. But if the MCM signal is only simply operated by inverse companding transform at the receiver, the resultant spectrum may exhibit severe in-band and out-of-band radiation of the distortion components, and considerable peak regrowth by excessive channel noises etc. In order to prevent these problems from occurring, in this paper, two novel nonlinear companding schemes with a iterative receiver are proposed to reduce the PAPR. By transforming the amplitude or power of the original MCM signals into uniform distributed signals, the novel schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Despite moderate complexity increasing at the receiver, but it is especially suitable to be combined with iterative channel estimation. Computer simulation results show that the proposed schemes can offer good system performances without any bandwidth expansion
Recurrent Coronal Jets Induced by Repetitively Accumulated Electric Currents
Three extreme-ultraviolet (EUV) jets recurred in about one hour on 2010
September 17 in the following magnetic polarity of active region 11106. The EUV
jets were observed by the Atmospheric Imaging Assembly (AIA) on board the Solar
Dynamics Observatory (SDO). The Helioseismic and Magnetic Imager (HMI) on board
SDO measured the vector magnetic field, from which we derive the magnetic flux
evolution, the photospheric velocity field, and the vertical electric current
evolution. The magnetic configuration before the jets is derived by the
nonlinear force-free field (NLFFF) extrapolation.
We derive that the jets are above a pair of parasitic magnetic bipoles which
are continuously driven by photospheric diverging flows. The interaction drove
the build up of electric currents that we indeed observed as elongated patterns
at the photospheric level. For the first time, the high temporal cadence of HMI
allows to follow the evolution of such small currents. In the jet region, we
found that the integrated absolute current peaks repetitively in phase with the
171 A flux evolution. The current build up and its decay are both fast, about
10 minutes each, and the current maximum precedes the 171 A by also about 10
minutes. Then, HMI temporal cadence is marginally fast enough to detect such
changes.
The photospheric current pattern of the jets is found associated to the
quasi-separatrix layers deduced from the magnetic extrapolation. From previous
theoretical results, the observed diverging flows are expected to build
continuously such currents. We conclude that magnetic reconnection occurs
periodically, in the current layer created between the emerging bipoles and the
large scale active region field. It induced the observed recurrent coronal jets
and the decrease of the vertical electric current magnitude.Comment: 10 pages, 7 figures, accepted for publication in A&
Entanglement detection beyond the CCNR criterion for infinite-dimensions
In this paper, in terms of the relation between the state and the reduced
states of it, we obtain two inequalities which are valid for all separable
states in infinite-dimensional bipartite quantum systems. One of them provides
an entanglement criterion which is strictly stronger than the computable
cross-norm or realignment (CCNR) criterion.Comment: 11 page
Effective generation of Ising interaction and cluster states in coupled microcavities
We propose a scheme for realizing the Ising spin-spin interaction and atomic
cluster states utilizing trapped atoms in coupled microcavities. It is shown
that the atoms can interact with each other via the exchange of virtual photons
of the cavities. Through suitably tuning the parameters, an effective Ising
spin-spin interaction can be generated in this optical system, which is used to
produce the cluster states. This scheme does not need the preparation of
initial states of atoms and cavity modes, and is insensitive to cavity decay.Comment: 11pages, 2 figures, Revtex
Decay and Continuity of Boltzmann Equation in Bounded Domains
Boundaries occur naturally in kinetic equations and boundary effects are
crucial for dynamics of dilute gases governed by the Boltzmann equation. We
develop a mathematical theory to study the time decay and continuity of
Boltzmann solutions for four basic types of boundary conditions: inflow,
bounce-back reflection, specular reflection, and diffuse reflection. We
establish exponential decay in norm for hard potentials for
general classes of smooth domains near an absolute Maxwellian. Moreover, in
convex domains, we also establish continuity for these Boltzmann solutions away
from the grazing set of the velocity at the boundary. Our contribution is based
on a new decay theory and its interplay with delicate
decay analysis for the linearized Boltzmann equation, in the presence of many
repeated interactions with the boundary.Comment: 89 pages
Flat galaxies with dark matter halos - existence and stability
We consider a model for a flat, disk-like galaxy surrounded by a halo of dark
matter, namely a Vlasov-Poisson type system with two particle species, the
stars which are restricted to the galactic plane and the dark matter particles.
These constituents interact only through the gravitational potential which
stars and dark matter create collectively. Using a variational approach we
prove the existence of steady state solutions and their nonlinear stability
under suitably restricted perturbations.Comment: 39 page
- âŠ