256 research outputs found

    A Supervised STDP-based Training Algorithm for Living Neural Networks

    Full text link
    Neural networks have shown great potential in many applications like speech recognition, drug discovery, image classification, and object detection. Neural network models are inspired by biological neural networks, but they are optimized to perform machine learning tasks on digital computers. The proposed work explores the possibilities of using living neural networks in vitro as basic computational elements for machine learning applications. A new supervised STDP-based learning algorithm is proposed in this work, which considers neuron engineering constrains. A 74.7% accuracy is achieved on the MNIST benchmark for handwritten digit recognition.Comment: 5 pages, 3 figures, Accepted by ICASSP 201

    Toward Certified Robustness of Distance Metric Learning

    Get PDF
    Metric learning aims to learn a distance metric such that semantically similar instances are pulled together while dissimilar instances are pushed away. Many existing methods consider maximizing or at least constraining a distance margin in the feature space that separates similar and dissimilar pairs of instances to guarantee their generalization ability. In this paper, we advocate imposing an adversarial margin in the input space so as to improve the generalization and robustness of metric learning algorithms. We first show that, the adversarial margin, defined as the distance between training instances and their closest adversarial examples in the input space, takes account of both the distance margin in the feature space and the correlation between the metric and triplet constraints. Next, to enhance robustness to instance perturbation, we propose to enlarge the adversarial margin through minimizing a derived novel loss function termed the perturbation loss. The proposed loss can be viewed as a data-dependent regularizer and easily plugged into any existing metric learning methods. Finally, we show that the enlarged margin is beneficial to the generalization ability by using the theoretical technique of algorithmic robustness. Experimental results on 16 datasets demonstrate the superiority of the proposed method over existing state-of-the-art methods in both discrimination accuracy and robustness against possible noise

    Improving Transferability of Adversarial Examples via Bayesian Attacks

    Full text link
    This paper presents a substantial extension of our work published at ICLR. Our ICLR work advocated for enhancing transferability in adversarial examples by incorporating a Bayesian formulation into model parameters, which effectively emulates the ensemble of infinitely many deep neural networks, while, in this paper, we introduce a novel extension by incorporating the Bayesian formulation into the model input as well, enabling the joint diversification of both the model input and model parameters. Our empirical findings demonstrate that: 1) the combination of Bayesian formulations for both the model input and model parameters yields significant improvements in transferability; 2) by introducing advanced approximations of the posterior distribution over the model input, adversarial transferability achieves further enhancement, surpassing all state-of-the-arts when attacking without model fine-tuning. Moreover, we propose a principled approach to fine-tune model parameters in such an extended Bayesian formulation. The derived optimization objective inherently encourages flat minima in the parameter space and input space. Extensive experiments demonstrate that our method achieves a new state-of-the-art on transfer-based attacks, improving the average success rate on ImageNet and CIFAR-10 by 19.14% and 2.08%, respectively, when comparing with our ICLR basic Bayesian method. We will make our code publicly available

    Structural deformation of shale pores in the fold-thrust belt: The Wufeng-Longmaxi shale in the Anchang Syncline of Central Yangtze Block

    Get PDF
    The gas-rich Wufeng-Longmaxi shale has been intensely deformed within the fold-thrust belt of the Yangtze Block. To better understand the impact of structural deformation on the shale pore system, this paper systematically investigated the matrix components, porosity and pore structures in core samples from theWufeng-Longmaxi shale, newly collected from various structural domains in the first commercial shale gas field of the Central Yangtze Block, the Anchang Syncline. The shale porosity generally showed a positive relationship with total organic carbon content. Nevertheless, even at a constant total organic carbon content, the shale porosity decreased from the syncline limb to the syncline hinge zone and with a decreasing interlimb angle in the syncline hinge zone, which aligned with the structural deformation strain during folding. The artificial axial compression of shale samples also confirmed that the decrease in shale porosity was stronger at an elevated axial compression stress and was relatively higher in samples with higher total organic carbon content. The organic pore size decreased with higher structural deformation strain, but the aspect ratio of the pore shape increased. Even quartz failed to resist the effective stress under the intensive structural deformation, changing the correlation between porosity and quartz from positive to negative. In contrast, pore spaces generated by the slipping between clay flakes under intensive deformation accounted for a positive relationship between clay content and bulk porosity. Considering the shale porosity reduction caused by the intensive structural deformation of shale pores, the Wufeng-Longmaxi shale, that is rich in fracture networks between roof and floor layers, may still be an excellent exploration target in the fold-thrust belt of the Yangtze Block.Cited as: Guo, X., Liu, R., Xu, S., Feng, B., Wen, T., Zhang, T. Structural deformation of shale pores in the fold-thrust belt: The Wufeng-Longmaxi shale in the Anchang Syncline of Central Yangtze Block. Advances in Geo-Energy Research, 2022, 6(6): 515-530. https://doi.org/10.46690/ager.2022.06.0

    RBA-GCN: Relational Bilevel Aggregation Graph Convolutional Network for Emotion Recognition

    Full text link
    Emotion recognition in conversation (ERC) has received increasing attention from researchers due to its wide range of applications. As conversation has a natural graph structure, numerous approaches used to model ERC based on graph convolutional networks (GCNs) have yielded significant results. However, the aggregation approach of traditional GCNs suffers from the node information redundancy problem, leading to node discriminant information loss. Additionally, single-layer GCNs lack the capacity to capture long-range contextual information from the graph. Furthermore, the majority of approaches are based on textual modality or stitching together different modalities, resulting in a weak ability to capture interactions between modalities. To address these problems, we present the relational bilevel aggregation graph convolutional network (RBA-GCN), which consists of three modules: the graph generation module (GGM), similarity-based cluster building module (SCBM) and bilevel aggregation module (BiAM). First, GGM constructs a novel graph to reduce the redundancy of target node information. Then, SCBM calculates the node similarity in the target node and its structural neighborhood, where noisy information with low similarity is filtered out to preserve the discriminant information of the node. Meanwhile, BiAM is a novel aggregation method that can preserve the information of nodes during the aggregation process. This module can construct the interaction between different modalities and capture long-range contextual information based on similarity clusters. On both the IEMOCAP and MELD datasets, the weighted average F1 score of RBA-GCN has a 2.17∼\sim5.21\% improvement over that of the most advanced method

    ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image Classification

    Get PDF
    Despite achieving state-of-the-art performance, deep learning methods generally require a large amount of labeled data during training and may suffer from overfitting when the sample size is small. To ensure good generalizability of deep networks under small sample sizes, learning discriminative features is crucial. To this end, several loss functions have been proposed to encourage large intra-class compactness and inter-class separability. In this paper, we propose to enhance the discriminative power of features from a new perspective by introducing a novel neural network termed Relation-and-Margin learning Network (ReMarNet). Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms. Specifically, a relation network is used to learn the features that can support classification based on the similarity between a sample and a class prototype; at the meantime, a fully connected network with the cross entropy loss is used for classification via the decision boundary. Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples and achieves competitive performance against state-of-the-art methods. Codes are available at https://github.com/liyunyu08/ReMarNet.Comment: IEEE TCSVT 202

    Urinary biomarkers associated with podocyte injury in lupus nephritis

    Get PDF
    The most prevalent and devastating form of organ damage in systemic lupus erythematosus (SLE) is lupus nephritis (LN). LN is characterized by glomerular injury, inflammation, cell proliferation, and necrosis, leading to podocyte injury and tubular epithelial cell damage. Assays for urine biomarkers have demonstrated significant promise in the early detection of LN, evaluation of disease activity, and tracking of reaction to therapy. This is because they are non-invasive, allow for frequent monitoring and easy self-collection, transport and storage. Podocyte injury is believed to be a essential factor in LN. The extent and type of podocyte injury could be connected to the severity of proteinuria, making podocyte-derived cellular debris and injury-related urinary proteins potential markers for the diagnosis and monitoring of LN. This article focuses on studies examining urinary biomarkers associated with podocyte injury in LN, offering fresh perspectives on the application of biomarkers in the early detection and management of LN

    Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Get PDF
    BACKGROUND: Guidelines recommend exercise for cardiovascular health, although evidence from trials linking exercise to cardiovascular health through intermediate biomarkers remains inconsistent. We performed a meta-analysis of randomized controlled trials to quantify the impact of exercise on cardiorespiratory fitness and a variety of conventional and novel cardiometabolic biomarkers in adults without cardiovascular disease. METHODS AND RESULTS: Two researchers selected 160 randomized controlled trials (7487 participants) based on literature searches of Medline, Embase, and Cochrane Central (January 1965 to March 2014). Data were extracted using a standardized protocol. A random-effects meta-analysis and systematic review was conducted to evaluate the effects of exercise interventions on cardiorespiratory fitness and circulating biomarkers. Exercise significantly raised absolute and relative cardiorespiratory fitness. Lipid profiles were improved in exercise groups, with lower levels of triglycerides and higher levels of high-density lipoprotein cholesterol and apolipoprotein A1. Lower levels of fasting insulin, homeostatic model assessment-insulin resistance, and glycosylated hemoglobin A1c were found in exercise groups. Compared with controls, exercise groups had higher levels of interleukin-18 and lower levels of leptin, fibrinogen, and angiotensin II. In addition, we found that the exercise effects were modified by age, sex, and health status such that people aged <50 years, men, and people with type 2 diabetes, hypertension, dyslipidemia, or metabolic syndrome appeared to benefit more. CONCLUSIONS: This meta-analysis showed that exercise significantly improved cardiorespiratory fitness and some cardiometabolic biomarkers. The effects of exercise were modified by age, sex, and health status. Findings from this study have significant implications for future design of targeted lifestyle interventions
    • …
    corecore