6,985 research outputs found

    The subordinated processes controlled by a family of subordinators and corresponding Fokker-Planck type equations

    Full text link
    In this work, we consider subordinated processes controlled by a family of subordinators which consist of a power function of time variable and a negative power function of α\alpha-stable random variable. The effect of parameters in the subordinators on the subordinated process is discussed. By suitable variable substitutions and Laplace transform technique, the corresponding fractional Fokker-Planck-type equations are derived. We also compute their mean square displacements in a free force field. By choosing suitable ranges of parameters, the resulting subordinated processes may be subdiffusive, normal diffusive or superdiffusive.Comment: 11 pages, accepted by J. Stat. Mech.: Theor. Ex

    New spectrum of negative-parity doubly charmed baryons: Possibility of two quasistable states

    Full text link
    The discovery of Ξcc++\Xi_{cc}^{++} by the LHCb Collaboration triggers predictions of more doubly charmed baryons. By taking into account both the PP-wave excitations between the two charm quarks and the scattering of light pseudoscalar mesons off the ground state doubly charmed baryons, a set of negative-parity spin-1/2 doubly charmed baryons are predicted already from a unitarized version of leading order chiral perturbation theory. Moreover, employing heavy antiquark-diquark symmetry the relevant low-energy constants in the next-to-leading order are connected with those describing light pseudoscalar mesons scattering off charmed mesons, which have been well determined from lattice calculations and experimental data. Our calculations result in a spectrum richer than that of heavy mesons. We find two very narrow JP=1/2J^P=1/2^- ΩccP\Omega_{cc}^P, which very likely decay into Ωccπ0\Omega_{cc}\pi^0 breaking isospin symmetry. In the isospin-1/2 ΞccP\Xi_{cc}^P sector, three states are predicted to exist below 4.2~GeV with the lowest one being narrow and the other two rather broad. We suggest to search for the ΞccP\Xi_{cc}^{P} states in the Ξcc++π\Xi_{cc}^{++}\pi^- mode. Searching for them and their analogues are helpful to establish the hadron spectrum.Comment: 6 pages, 3 figures; accepted for publication as a Rapid Communication in Physical Review

    A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Get PDF
    Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites

    Performance of Photosensors in the PandaX-I Experiment

    Full text link
    We report the long term performance of the photosensors, 143 one-inch R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the first phase of the PandaX dual-phase xenon dark matter experiment. This is the first time that a significant number of R11410 photomultiplier tubes were operated in liquid xenon for an extended period, providing important guidance to the future large xenon-based dark matter experiments.Comment: v3 as accepted by JINST with modifications based on reviewers' comment

    Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cone beam CT (CBCT) guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF) errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT) guided accelerated partial breast irradiation (APBI).</p> <p>Methods</p> <p>Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels.</p> <p>Results</p> <p>A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR), 3.1 mm and 2.3 mm in the superior-inferior (SI), and 2.3 mm and 2.0 mm in the anterior-posterior (AP) directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10.1 mm and 12.7 mm in the AP direction, respectively.</p> <p>Conclusions</p> <p>Residual and intrafractional errors can significantly affect the accuracy of image-guided APBI with nonplanar 3DCRT techniques. If a 10-mm CTV-PTV margin is applied, a correction action level of 5 mm or less is necessary so as to maintain the RAIF errors within 10 mm for more than 95% of fractions. Pre-treatment CBCT guidance is not a guarantee for safe delivery of the treatment despite its known benefits of reducing the initial setup errors. A patient position verification and correction during the treatment may be a method for the safe delivery.</p

    (Acetyl­acetonato-κ2 O,O′)bis­[2-(5-methyl-3-phenyl­pyrazin-2-yl-κN 1)phen­yl-κC 1]iridium(III)

    Get PDF
    In the title complex, [Ir(C17H13N2)2(C5H7O2)], the IrIII atom is hexa­coordinated in a distorted octa­hedral geometry by two C,N-bidentate 2-(5-methyl-3-phenyl­pyrazin-2-yl)phenyl (mdpp) ligands and one O,O-bidentate acetyl­acetonate ligand. The dihedral angles between the phenyl rings and the pyrazine ring are 9.56 (14) and 58.99 (14)° for one mdpp ligand and 9.34 (14) and 79.94 (15)° for the other

    5,6,7-Trichloro-2-meth­oxy-8-hy­droxy­quinoline

    Get PDF
    In the title compound, C10H6Cl3NO2, a mean plane fitted through all non-H atoms has an r.m.s. deviation of 0.035 Å. In the crystal, adjacent mol­ecules are connected by O—H⋯O hydrogen bonds and π–π stacking inter­actions [centroid–centroid distance = 3.650 (1) Å], resulting in an infinite chain which propagates in the b-axis direction
    corecore