14 research outputs found

    Flow-diverter stents combined with flow-T stenting-assisted coiling for the treatment of a large basilar apex aneurysm: a case report with a 9-month follow-up

    Get PDF
    BackgroundEndovascular or surgical treatment of wide-neck, large basilar apex aneurysms is challenging. We present a novel concept for the treatment of complex basilar apex aneurysms using flow-diverter devices combined with the flow-T stenting-assisted coiling technique. Assess the efficacy and safety profile of the technique in this complex aneurysm.Case descriptionA patient with multiple unruptured intracranial aneurysms underwent staged treatment. A large basilar apex aneurysm was treated with a flow-diverter stent combined with a flow-T stenting-assisted coiling technique in the first stage, and a giant supraclinoid aneurysm was treated with a flow-diverter stent applied in the second stage. Clinical presentations, technical details, intra- and perioperative complications, and clinical and angiographic outcomes were recorded, with a 9-month follow-up.ResultsThe patient achieved full neurologic recovery postoperatively. Cerebral angiography performed postoperatively showed revascularization, good laminar flow, and no in-stent or adjacent stenosis.ConclusionFlow-diverter stents combined with flow-T stenting-assisted coiling for the treatment of giant basilar apex aneurysms is a feasible technique with efficacy demonstrated at a 9-month follow-up. Staged endovascular treatment of multiple intracranial aneurysms may be a safe and viable option

    HBV infection-induced liver cirrhosis development in dual-humanized mice with human bone mesenchymal stem cell transplantation

    Get PDF
    疾病动物模型是现代医学发展的基石,尤其是重大、突发传染病暴发时,适宜的疾病动物模型可为及时发现病原体、制定防控策略提供强大保障,原创的疾病动物模型已成为衡量一个国家生物医药科研水平的标志。我校夏宁邵教授团队和浙江大学附属第一医院李君教授团队历经5年的协同攻关,终于建立了国际上首个高度模拟人类乙肝病毒(HBV)自然感染诱发的慢乙肝肝硬化小鼠模型。厦门大学公共卫生学院袁伦志博士生、浙江大学医学院附属第一医院江静博士和厦门大学公共卫生学院刘旋博士生为该论文共同第一作者。厦门大学夏宁邵教授、浙江大学附属第一医院李君教授和厦门大学程通副教授为该论文共同通讯作者。【Abstract】Objective: Developing a small animal model that accurately delineates the natural history of hepatitis B virus (HBV) infection and immunopathophysiology is necessary to clarify the mechanisms of host-virus interactions and to identify intervention strategies for HBV-related liver diseases. This study aimed to develop an HBV-induced chronic hepatitis and cirrhosis mouse model through transplantation of human bone marrow mesenchymal stem cells (hBMSCs). Design: Transplantation of hBMSCs into Fah -/- Rag2 -/- IL-2Rγc -/- SCID (FRGS) mice with fulminant hepatic failure (FHF) induced by hamster-anti-mouse CD95 antibody JO2 generated a liver and immune cell dual-humanized (hBMSC-FRGS) mouse. The generated hBMSC-FRGS mice were subjected to assessments of sustained viremia, specific immune and inflammatory responses and liver pathophysiological injury to characterize the progression of chronic hepatitis and cirrhosis after HBV infection. Results: The implantation of hBMSCs rescued FHF mice, as demonstrated by robust proliferation and transdifferentiation of functional human hepatocytes and multiple immune cell lineages, including B cells, T cells, NK cells, dendritic cells (DCs) and immune cell lineages, including B cells, T cells, NK cells, dendritic cells (DCs) and viremia and specific immune and inflammatory responses and showed progression to chronic hepatitis and liver cirrhosis at a frequency of 55% after 54 weeks. Conclusion: This new humanized mouse model recapitulates the liver cirrhosis induced by human HBV infection, thus providing research opportunities for understanding viral immune pathophysiology and testing antiviral therapies in vivo.this work was supported by the national Science and technology Major Project (grant nos. 2017ZX10304402, 2017ZX10203201 and 2018ZX09711003-005-003), the national natural Science Foundation of china(grant nos. 81672023, 81571818 and 81771996), the Scientific research Foundation of the State Key laboratory of Molecular Vaccinology and Molecular Diagnostics (grant no 2016ZY005), Zhejiang Province and State's Key Project of the research and Development Plan of china (grant nos 2017c01026 and 2016YFc1101304/3).该研究获得了传染病防治国家科技重大专项、新药创制国家科技重大专项和国家自然科学基金的资助

    Efficacy of Complex coils in embolization of intracranial lobulated aneurysms: a clinical analysis of 34 cases

    No full text
    Objective To evaluate the efficacy of Complex coils as the framing coils on the embolization of intracranial lobulated aneurysms. Methods From April 2017 to April 2018, 34 patients with lobulated aneurysms admitted in our neurosurgery department were enrolled in this study. They all underwent implantation of Complex coils as the framing coils, and their clinical data were collected and retrospectively analyzed. The results of intraoperative cerebral angiography and follow-up outcomes were discussed. Results According to the Raymond standard of aneurysm occlusion, grade Ⅰ occurred in 27 of 34 patients (79.4%), and grade Ⅱ in 5 patients (14.7%), in intraoperative assessment. In the 31 patients who were followed-up through digital subtraction angiography at 6 months after operation, no recurrence was found. In the assessment of aneurysm occlusion, Raymond grade Ⅰ was achieved in 28 patients (90.3%), and Raymond grade Ⅱ in 3 patients (9.7%). No complications associated with Complex coils were observed during perioperative period. Conclusion Complex coils achieves a high success rate as forming frame in the embolization of lobulated aneurysms, with no obvious increase in complications

    Defect Detection of Aluminum Alloy Wheels in Radiography Images Using Adaptive Threshold and Morphological Reconstruction

    No full text
    In low-pressure casting, aluminum alloy wheels are prone to internal defects such as gas holes and shrinkage cavities, which call for X-ray inspection to ensure quality. Automatic defect segmentation of X-ray images is an important task in X-ray inspection of wheels. For this, a solution is proposed here that combines adaptive threshold segmentation algorithm and mathematical morphology reconstruction. First, the X-ray image of the wheel is smoothed, and then the smoothed image is subtracted from the original image, and the resulting difference image is binarized; the binary image resulting from the low threshold is taken as the marker image, and that from the high threshold is taken as mask image, and mathematical morphology reconstruction is performed on the two images, with the resulting image being the preliminary result of the wheel defect segmentation. Finally, with area and diameter parameters as the conditions, the preliminary segmentation result is analyzed, and the defect regions satisfying the conditions are taken as the ultimate result of the whole solution. Experiments proved the feasibility of the above solution, which is found capable of extracting different types of wheel defects satisfactorily
    corecore