5,353 research outputs found

    A Marr's Three‐Level Analytical Framework for Neuromorphic Electronic Systems

    Get PDF
    Neuromorphic electronics, an emerging field that aims for building electronic mimics of the biological brain, holds promise for reshaping the frontiers of information technology and enabling a more intelligent and efficient computing paradigm. As their biological brain counterpart, the neuromorphic electronic systems are complex, having multiple levels of organization. Inspired by David Marr's famous three-level analytical framework developed for neuroscience, the advances in neuromorphic electronic systems are selectively surveyed and given significance to these research endeavors as appropriate from the computational level, algorithmic level, or implementation level. Under this framework, the problem of how to build a neuromorphic electronic system is defined in a tractable way. In conclusion, the development of neuromorphic electronic systems confronts a similar challenge to the one neuroscience confronts, that is, the limited constructability of the low-level knowledge (implementations and algorithms) to achieve high-level brain-like (human-level) computational functions. An opportunity arises from the communication among different levels and their codesign. Neuroscience lab-on-neuromorphic chip platforms offer additional opportunity for mutual benefit between the two disciplines

    EFFECT OF CHINESE MEDICAL HERBS- BURN LINIMENT ON DEEP SECOND DEGREE BURN IN RATS

    Get PDF
    Background: Burn Liniment (BL) is a popular traditional Chinese medicine formula consisting five herbal medicines (Flos Lonicerae, Rhizoma Polygoni Cuspidati, Pericarpium Granati,Terminalia chebula Retz. and Galla Chinensis), that has been used in China for centuries to cure burn. This study investigated the healing effect of BL on deep second degree burn wounds in rats. Materials and methods: The animals were divided into four groups including control group, model group,1% silver sulfadiazine (SSD) group and BL group. On days 0,3,7,14 and 21,animal weight, wound area as well as histo-pathological observations of the skin were evaluated in different groups. Serum anti-intercellular adhesion molecule 1(ICAM-1), IL-10 levels and myeloperoxidase (MPO) activity were measured on the 21st day. HPLC chromatography of BL was prepared and concentrations of active constituents were determined. Antibacterial test and toxicological test were also performed. Results: The average wound area of BL treatment group was also significantly smaller than model control rats on days 14 and 21. Serum anti-intercellular adhesion molecule 1(ICAM-1) levels and myeloperoxidase (MPO) activity of BL group decreased significantly than in model rats on day 21 while IL-10 level of BL group increased remarkably than in model rats on the 21st day, showing that BL has strong anti-inflammatory activity on burned rats. The histological studies indicated that inflammatory cells disappeared significantly and were replaced by new granulation tissue, and epithelialization progressed quickly and was treated with BL on the 21st day. Meanwhile, HPLC chromatography of BL was prepared and concentration of Chlorogenic acid, Polydatin and Gallic acid from BL were determined. Antibacterial test revealed that the MIC of BL on Staphyloccocus aureus, Pseudomonas aeruginosa and Escherichia coli were 1.56, 6.25 and 1.56 mg•mL-1 respectively. Toxicological test showed that BL does not induce skin irritation or sensitivity signs and has no acute toxicity reaction. Conclusions: Our study revealed that BL could enhance cutaneous burn wound healing effectively. It also showed strong anti-inflammatory and antibacterial activity in rats

    Immunohistochemical localization of mu opioid receptor in the marginal division with comparison to patches in the neostriatum of the rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mu opioid receptor (MOR), which plays key roles in analgesia and also has effects on learning and memory, was reported to distribute abundantly in the patches of the neostriatum. The marginal division (MrD) of the neostriatum, which located at the caudomedial border of the neostriatum, was found to stain for enkephalin and substance P immunoreactivities and this region was found to be involved in learning and memory in our previous study. However, whether MOR also exists in the MrD has not yet been determined.</p> <p>Methods</p> <p>In this study, we used western blot analysis and immunoperoxidase histochemical methods with glucose oxidase-DAB-nickel staining to investigate the expression of MOR in the MrD by comparison to the patches in the neostriatum.</p> <p>Results</p> <p>The results from western blot analyses revealed that the antibody to MOR detected a 53 kDa protein band, which corresponded directly to the molecular weight of MOR. Immunohistochemical results showed that punctate MOR-immunoreacted fibers were observed in the "patch" areas in the rostrodorsal part of the neostriatum but these previous studies showed neither labelled neuronal cell bodies, nor were they shown in the caudal part of the neostriatum. Dorsoventrally oriented dark MOR-immunoreactive nerve fibers with individual labelled fusiform cell bodies were firstly observed in the band at the caudomedial border, the MrD, of the neostriatum. The location of the MOR-immunoreactivity was in the caudomedial border of the neostriatum. The morphology of the labelled fusiform neuronal somatas and the dorsoventrally oriented MOR-immunoreacted fibers in the MrD was distinct from the punctate MOR-immunoreactive diffuse mosaic-patterned patches in the neostriatum.</p> <p>Conclusions</p> <p>The results indicated that MOR was expressed in the MrD as well as in patches in the neostriatum of the rat brain, but with different morphological characteristics. The punctate MOR-immunoreactive and diffuse mosaic-patterned patches were located in the rostrodorsal part of the neostriatum. By contrast, in the MrD, the dorsoventrally parallel oriented MOR-immunoreactive fibers with individual labelled fusiform neuronal somatas were densely packed in the caudomedial border of the neostriatum. The morphological difference in MOR immunoreactivity between the MrD and the patches indicated potential functional differences between them. The MOR most likely plays a role in learning and memory associated functions of the MrD.</p

    Superconductivity in the high-entropy ceramics Ti0.2Zr0.2Nb0.2Mo0.2Ta0.2Cx with possible nontrivial band topology

    Full text link
    Topological superconductors have drawn significant interest from the scientific community due to the accompanying Majorana fermions. Here, we report the discovery of electronic structure and superconductivity in high-entropy ceramics Ti0.2Zr0.2Nb0.2Mo0.2Ta0.2Cx (x = 1 and 0.8) combined with experiments and first-principles calculations. The Ti0.2Zr0.2Nb0.2Mo0.2Ta0.2Cx high-entropy ceramics show bulk type-II superconductivity with Tc about 4.00 K (x = 1) and 2.65 K (x = 0.8), respectively. The specific heat jump is equal to 1.45 (x = 1) and 1.52 (x = 0.8), close to the expected value of 1.43 for the BCS superconductor in the weak coupling limit. The high-pressure resistance measurements show that a robust superconductivity against high physical pressure in Ti0.2Zr0.2Nb0.2Mo0.2Ta0.2C, with a slight Tc variation of 0.3 K within 82.5 GPa. Furthermore, the first-principles calculations indicate that the Dirac-like point exists in the electronic band structures of Ti0.2Zr0.2Nb0.2Mo0.2Ta0.2C, which is potentially a topological superconductor. The Dirac-like point is mainly contributed by the d orbitals of transition metals M and the p orbitals of C. The high-entropy ceramics provide an excellent platform for the fabrication of novel quantum devices, and our study may spark significant future physics investigations in this intriguing material.Comment: 28 pages, 7 figures,The manuscript with the same title will be published by Advanced Scienc

    MV-CVIB: a microbiome-based multi-view convolutional variational information bottleneck for predicting metastatic colorectal cancer

    Get PDF
    IntroductionImbalances in gut microbes have been implied in many human diseases, including colorectal cancer (CRC), inflammatory bowel disease, type 2 diabetes, obesity, autism, and Alzheimer's disease. Compared with other human diseases, CRC is a gastrointestinal malignancy with high mortality and a high probability of metastasis. However, current studies mainly focus on the prediction of colorectal cancer while neglecting the more serious malignancy of metastatic colorectal cancer (mCRC). In addition, high dimensionality and small samples lead to the complexity of gut microbial data, which increases the difficulty of traditional machine learning models.MethodsTo address these challenges, we collected and processed 16S rRNA data and calculated abundance data from patients with non-metastatic colorectal cancer (non-mCRC) and mCRC. Different from the traditional health-disease classification strategy, we adopted a novel disease-disease classification strategy and proposed a microbiome-based multi-view convolutional variational information bottleneck (MV-CVIB).ResultsThe experimental results show that MV-CVIB can effectively predict mCRC. This model can achieve AUC values above 0.9 compared to other state-of-the-art models. Not only that, MV-CVIB also achieved satisfactory predictive performance on multiple published CRC gut microbiome datasets.DiscussionFinally, multiple gut microbiota analyses were used to elucidate communities and differences between mCRC and non-mCRC, and the metastatic properties of CRC were assessed by patient age and microbiota expression

    Effect of compounds on the purification and antibody preparation of the extracellular domain fragment of the receptor CD163

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Porcine reproductive and respiratory syndrome virus (PRRSV) has been acknowledged as one of the most important agents affecting swine. The scavenger receptor CD163 is one of the important entry mediators for PRRSV.</p> <p>Results</p> <p>The tD4 and tD5 CD163 genes were amplified, and the PCR products were cloned into pET-28a(+) (designated pET-28a-tD4 and pET-28a-tD5, respectively). The plasmids pET-28a-tD4 and pET-28a-tD5 were then transformed into the <it>E. coli </it>BL21 (DE3) strain and expressed by adding 1 mmol/L of isopropyl-beta-D-thiogalactopyranoside. The proteins were highly expressed in the supernatant from the tD4- and tD5-producing cells that were incubated with a binding buffer containing the following compounds: β-mercaptoethanol, urea, Tween 20, glycerol, and SDS, while they were rarely expressed in the supernatant from the tD4- and tD5-producing cells that were incubated with binding buffer without the compounds. The tD4 and tD5 proteins were purified, and BALB/c mice were immunized with the purified proteins. Western blotting analysis showed that the tD4 and tD5 proteins were capable of reacting with tD5 antibodies; the titer of both the tD4 and tD5 antiserums was 1:160 against the tD5 protein, as shown by ELISA.</p> <p>Conclusions</p> <p>These studies provide a new way for the purification of proteins expressed in inclusion bodies and the preparation of the corresponding antibodies.</p
    corecore