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Introduction: Imbalances in gut microbes have been implied in many human

diseases, including colorectal cancer (CRC), inflammatory bowel disease, type 2

diabetes, obesity, autism, and Alzheimer’s disease. Compared with other human

diseases, CRC is a gastrointestinal malignancy with high mortality and a high

probability of metastasis. However, current studies mainly focus on the prediction

of colorectal cancer while neglecting the more serious malignancy of metastatic

colorectal cancer (mCRC). In addition, high dimensionality and small samples lead

to the complexity of gut microbial data, which increases the di�culty of traditional

machine learning models.

Methods: To address these challenges, we collected and processed 16S

rRNA data and calculated abundance data from patients with non-metastatic

colorectal cancer (non-mCRC) and mCRC. Di�erent from the traditional health-

disease classification strategy, we adopted a novel disease-disease classification

strategy and proposed a microbiome-based multi-view convolutional variational

information bottleneck (MV-CVIB).

Results: The experimental results show that MV-CVIB can e�ectively predict

mCRC. This model can achieve AUC values above 0.9 compared to other state-

of-the-art models. Not only that, MV-CVIB also achieved satisfactory predictive

performance on multiple published CRC gut microbiome datasets.

Discussion: Finally, multiple gut microbiota analyses were used to elucidate

communities and di�erences betweenmCRC and non-mCRC, and the metastatic

properties of CRC were assessed by patient age and microbiota expression.

KEYWORDS

microbiome, multi-view, information bottleneck, metastatic colorectal cancer, risk

assessment

1. Introduction

The human intestine is one of the most important organs in the digestive system, which

maintains the normal life activities of the human body throughmetabolism (Cho and Blaser,

2012). Microbes in the gut derive energy from the food we eat and release metabolites and

hormones to regulate physical health. As our microbial research continues to deepen, more

and more investigations show that the chemical signals released by human gut microbes

play a key role in human health and disease (Gilbert et al., 2018). From the perspective

of human health, the intestinal flora in the body contributes to the construction of the
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immune system and participates in and regulates the physiological

processes of various cells (De Sordi et al., 2019). More importantly,

a variety of complex diseases have been confirmed to be related

to certain intestinal flora, including inflammatory bowel disease,

type 2 diabetes, Alzheimer’s disease, HIV, autism, obesity, and

cardiovascular and cerebrovascular diseases (Schmidt et al., 2018;

Shkoporov et al., 2019). Some malignancies, such as colorectal

cancer (CRC), have also been shown to be associated with gut

microbes (Chen et al., 2022; Wani et al., 2022). CRC is the third

leading cause of cancer deaths, and ∼20% of patients develop

metastases, known as metastatic colorectal cancer (mCRC). It

mainly includes colon cancer liver metastasis, multiple lymph node

metastasis, hematogenous metastasis, and implantation metastasis

(Enquist et al., 2014). All of this emerging evidence confirms that

the gut microbiome can be a potential predictor of a variety of

diseases and cancers (Zou et al., 2017).

With the advent of the genome era, the development of high-

throughput sequencing technology has provided a new technical

platform for the study of microbial community structure (Zhou

et al., 2015). In particular, 16S rRNA gene sequencing has become

an important means to study the composition and distribution of

gut microbial communities (Langille et al., 2013). It fully shows

the diversity of human gut flora and reveals potential factors

for disease aggravation. Although much evidence suggests that

the gut microbiome can be used to predict colorectal cancer,

few investigations have used microbial data to identify mCRC.

Therefore, effectively extracting key features of the microbiota from

gut microbial data faces a series of challenges (Cammarota et al.,

2020; Wang and Zou, 2023). Since disease samples are small and

more difficult to obtain than healthy samples, a large number

of studies use healthy-disease groups rather than disease-disease

groups. A small number of samples and many features can lead to

the curse of dimensionality, that is, features are highly sparse, such

as strain-level informative data containing hundreds of thousands

of genetic markers (Somorjai et al., 2003; Akay and Hess, 2019).

However, it is almost difficult for traditional machine learning

models to mine valuable information from such small sample data.

Second, although gene signatures provide more information than

microbial abundance data, more feature information also requires

huge computational resources, which may lead to overfitting and

greatly increase the time cost (Yang et al., 2021).

Considering the metastatic characteristics of CRC, non-

metastatic colorectal cancer (non-mCRC) patients are more

worried about mCRC with higher mortality (Reyes et al., 2019;

Rumpold et al., 2020). Existing microbiome-based CRC prediction

methods mainly use species relative abundance or strain-level

marker profiles or a combination of the two. With the development

of deep learning, it has become feasible to use deep learning

to predict CRC from gut microbiome data (Marcos-Zambrano

et al., 2021; Salim et al., 2023). The MicroPheno method is based

on 16S rRNA sequence data, subsamples it, and computes the

k-mer representation of the sequence, and the final k-mer is

used to complete disease prediction (Asgari et al., 2018). Oh and

Zhang (2020) proposed dimensionality reduction of microbiome

abundance data or gene signature profiles with multiple different

autoencoders, and then classical machine learning methods were

used to complete disease classification. Reiman et al. (2020)

took a microbial phylogenetic tree matrix as input and used a

convolutional neural network (CNN) for disease prediction.Wirbel

et al. (2021) developed SIAMCAT, a multifunctional R toolbox for

machine learning-based comparative metagenomics. The toolbox

contains a variety of feature matrices such as genes, pathways,

and microbial taxa to statistically infer host disease phenotype

associations. Grazioli et al. proposed multimodal variational

information bottleneck (MVIB), a multimodal representation that

can input species relative abundance, strain-level marker profiles,

and metabolomic data and learn meaningful joint codes through

information bottleneck theory (Grazioli et al., 2022). This study

used multiple published microbiome disease phenotype datasets

including CRC and achieved excellent predictive performance.

However, the relative independence among relative abundances,

strain-level marker profiles, and metabolomic data contains rich

cross-modal information in addition to the modal information of

the microbiome, which may lead to model uncertainty (Holzinger

et al., 2022).

Compared with the traditional health-disease classification

strategy, we adopt a new disease-disease classification strategy,

which identifies more severe diseases among sick patients. Disease-

disease sample features are often more difficult to distinguish

than healthy-disease sample features, which is also a challenge for

predictive models. Figure 1 shows the specific strategy process.

In this study, we propose amulti-view convolutional variational

information bottleneck (MV-CVIB) model to specifically address

the prediction problem of mCRC. The variational information

bottleneck (VIB) can extract all the judgmental information that

is helpful for disease prediction while filtering out redundant

information (Alemi et al., 2016). For deep neural networks,

forgetting details enables the model to form general concepts and

improves generalization performance. The Qiime2 tool was used

to process and obtain the final relative abundance data (Hall and

Beiko, 2018). We calculated the Euclidean distance between each

sample based on the relative abundance of the microbiome and

took the samples with the closest Euclidean distance as neighbors.

Therefore, the nearest neighbor information between each sample

can be regarded as a new view. MV-CVIB expands the microbiome

input data structure to the maximum capacity while also being

insensitive to outliers in the data. Not only that, to test the

generalization ability of MV-CVIB, we also performed various

experiments on multiple published control-CRC datasets.

The contributions of this study are as follows:

(1) Current studies mainly focus on the prediction of CRC while

neglecting the more severe mCRC. We are the first to apply

deep learning to the microbiome-based mCRC prediction

problem and achieve excellent prediction results.

(2) Compared with the traditional health-disease classification

strategy, we adopt a new disease-disease classification

strategy, which identifies more severe diseases among sick

patients. Identifying more complex diseases from diseases

is more conducive to mining the underlying nature of

disease exacerbations.

(3) We compute the nearest neighbor information for the

relative abundance data and feed it together as a view

into the VIB with convolution and pooling modules.
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FIGURE 1

(A) Traditional classification strategy for microbiome-based disease prediction is health to disease. (B) Our strategy for microbiome-based disease

prediction is disease to disease, focusing on predicting malignancy from disease, such as the prediction from non-metastatic colorectal cancer

(non-mCRC) to metastatic colorectal cancer (mCRC).

The VIB can extract all the judgmental information

that is helpful for disease prediction while filtering out

redundant information. Since we introduce convolution

and pooling operations into the model, the data in

the input stream become smoother, which increases the

robustness and generalization ability of the model and

avoids overfitting.

2. Materials and methods

2.1. Datasets

To evaluate and analyze predictive models, we collected 16S

rRNA data from the gut microbiota of patients with metastatic

colorectal cancer (mCRC, n = 9) and non-metastatic colorectal

cancer (non-mCRC, n = 7) from the National Center for

Biotechnology Information (NCBI) (Coordinators, 2015). The

original data come from the People’s Hospital ofWuhanUniversity,

and the data type is raw sequence read. Raw sequence data

can be accessed through the NCBI Sequence Read Archive

(SRA) database (https://www.ncbi.nlm.nih.gov/bioproject/?term=

PRJNA531761). Table 1 shows the specific information of all

samples. Figure 2 shows that each sample is isolated in the gut.

The pre-processing of this dataset will be described in detail in the

next section.

In addition, we also collected three control-CRC datasets

from published studies to evaluate the generalization ability of

the model, specifically including colorectal (Pasolli et al., 2016),

colorectal-EMBL, and early-colorectal-EMBL (Zeller et al., 2014).

Only the CRC group and the healthy group were included in these

TABLE 1 Specific information for non-mCRC patients and mCRC patients.

Sample ID Disease status Age Gender

SRR8873486 Non-mCRC 68 Male

SRR8873495 Non-mCRC 74 Male

SRR8873494 Non-mCRC 68 Male

SRR8873483 Non-mCRC 65 Female

SRR8873496 Non-mCRC 66 Female

SRR8873491 Non-mCRC 38 Male

SRR8873490 Non-mCRC 54 Female

SRR8873493 mCRC 44 Female

SRR8873492 mCRC 70 Male

SRR8873487 mCRC 82 Female

SRR8873484 mCRC 85 Male

SRR8873489 mCRC 56 Female

SRR8873488 mCRC 73 Male

SRR8873498 mCRC 32 Male

SRR8873485 mCRC 61 Female

SRR8873497 mCRC 68 Male

datasets and had unique true labels, diseased or healthy. Therefore,

this study does not perform predictions on the future health of

the samples. Table 2 shows the specific information of the three

public datasets.
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FIGURE 2

Each sample is isolated di�erently from the gut.

2.2. Pre-processing

First, we converted sra files on NCBI to fastq.gz files using

fastq-dump version 2.8.0 in SRA Toolkit and then converted it to

multiple fastq files with forward and reverse. The next step is to

import these data into Qiime2 and review the data quality. Next, we

denoise the data using Deblur with default parameters. The specific

role is to filter out noisy sequences, remove chimeric sequences,

accidental sequences (sequences that occur only once), and de-

redundant these sequences. The purpose is to obtain the signature

table and reference sequence.

Finally, we used Qiime2 to analyze the composition of

microbial communities from the denoised data. Among them, the

feature table represents the relative abundance of species and serves

as the input feature vector of the proposed model.

2.3. Multiple types of dimensionality
reduction analysis

In this study, to explore the internal structural characteristics

of the pre-processed data and the degree of cognitive difference

between mCRC and non-mCRC, we used various types of

dimensionality reduction analysis methods (He et al., 2023),

including principal components analysis (PCA) (Jiang et al.,

2022), principal co-ordinates analysis (PCoA) (Wang et al.,

2016), t-distributed stochastic neighbor embedding (t-SNE) (Kostic

et al., 2015), and non-metric multidimensional scaling (NMDS)

(Mekadim et al., 2022). The difference analysis section in Figure 3

shows an outline of the four dimensionality reduction approaches

between mCRC and non-mCRC.

TABLE 2 Three CRC datasets from published studies.

Datasets Total
samples

Control
sample

Disease
samples

Colorectal (CRC1) 121 73 48

Colorectal-EMBL (CRC2) 199 103 96

Early-colorectal-EMBL (CRC3) 96 52 44

For PCA, the original microbial characteristic information

of samples is projected into the dimension with the maximum

projection information as far as possible. The advantage of PCA

is that the loss of feature information after dimension reduction is

minimal. The disadvantage is that in the case of complete ignorance

of the data, PCA cannot better retain data information. For PCoA,

it is a non-constrained dimension reduction method, and PCoA

can find the most important coordinates in the distance matrix

without changing the mutual position relationship between mCRC

and non-mCRC. The disadvantage is that PCoA can only roughly

understand the similarity or difference between samples but cannot

accurately calculate the degree of difference. For t-SNE, it is a non-

linear dimension reduction method, which can preserve the local

features of the dataset. The disadvantage of t-SNE is that the setting

of hyperparameters is relatively strict, and an improper setting

will lead to poor results. Similar to PCoA, NMDS also uses the

sample similarity distance matrix for dimension reduction analysis.

It is worth noting that NMDS focuses on the ordering relation of

values in the distancematrix.When there aremore samples, NMDS

can more accurately reflect the differences among samples. The

disadvantage of NMDS is that it is easy to fall into the local optimal

point, and it needs to run several times with different random
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FIGURE 3

Work flowchart. Pre-processing: We collected the sequence information of the samples from NCBI and obtained the species abundance data

through a series of quality control and filtering methods, and at the same time, we calculated the nearest neighbor information of the samples.

Variance Analysis: We map abundance data into a two-dimensional space through dimensionality reduction. (A) PCA is used for dimensionality

reduction and visualization. (B) PCoA is used for dimensionality reduction and visualization. (C) T-SNE is used for dimensionality reduction and

visualization. (D) NMDS is used for dimensionality reduction and visualization. Community Analysis: (A) We used the species accumulation curve

(SAC) to describe the real situation of the disease samples. (B) We used volcano plots to visualize upregulated and downregulated points. MV-CVIB:

Flowchart of the proposed method. The method specifically includes three fully connected layers, a two-dimensional convolutional layer, a

maximum pooling layer, a PoE module, a decoding module, and an output layer.
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starts to be more likely to obtain the global optimal solution. In

addition, we also performed four types of dimensionality reduction

visualization analysis on three CRC datasets. Overall, similar to

the case of mCRC, there is a large overlap between healthy and

diseased sample points. Specific experimental results are included

in Supplementary material.

Considering the small number of samples and more feature

information inmCRC and non-mCRC, we used four different types

of dimensionality reduction methods to mine the distribution rules

of samples in the dimensional space. According to the results, the

spatial distribution of mCRC and non-mCRC is different, but some

samples overlap in space. However, compared with non-mCRC,

mCRC is formed by further deterioration on the basis of non-

mCRC, so there are differences in microbial abundance features. In

addition, to further show the significance index of the difference

between the groups, we performed an analysis of similarities

(ANOSIM) (Buttigieg and Ramette, 2014) on the mCRC dataset

and three CRC datasets, respectively. As a non-parametric test

method, ANOSIM has been widely used to evaluate the overall

similarity and similar significance of two sets of experimental

data. The results are detailed in Supplementary material. From the

experimental results, there are statistically significant differences

between the groups of the mCRC, CRC1, and CRC2 datasets (R-

value of >0 and P-value of <0.05). There is a difference between

the groups in the CRC3 dataset but not significant (R-value of >0

and P-value of >0.05), which may be related to the fact that the

samples included in the dataset are early CRC patients and late

CRC patients.

2.4. Microbial Community Analysis

To measure the species richness status in the community and

judge whether the number of samples is sufficient, we used the

species accumulation curve (SAC) (Gotelli and Colwell, 2001) to

describe the real situation of the disease samples. With the help of

the SAC, we can not only estimate the diversity difference between

different communities reflected by the number of samples but

also estimate the upper limit of community diversity under the

condition that the number of samples is sufficient. In addition,

based on the principle of statistical testing, we use the volcano plot

to show the distribution of abundance level differences between the

samples. The detailed results are shown in the Community Analysis

section of Figure 3.

From the SAC, we can observe that the curve eventually flattens

out, which confirms that the number of samples is reasonable. In

other words, the number of mCRC and non-mCRC in the dataset

can effectively reflect the species diversity and species richness of

the samples. From the volcano plot, there are some significant

points, including 24 upregulated points and 63 downregulated

points, most of which have no significant difference.

2.5. The multi-view convolutional
variational information bottleneck

We setY to be a random variable.X1,X2, . . . ,XV represent a set

of multi-view input random variables, and Y is their ground-truth

labels. To make the notation more compact, a collection of data

views is represented as a data point X = {Xi | ith view present}. We

set U to be a stochastic encoding of X, defined by the parameter

encoder p (u|x; θ), which comes from the deep neural network

of the intermediate layers in the upstream part of the model.

Furthermore, in the rest of this study, X, Y , and U are represented

as random variables, and x, y, and u are their multidimensional

instances, respectively. θ is a parameter vector, and θ is a function

parameterized by θ . S is a set.

Referring to the information bottleneck theory (Tishby et al.,

2000), the purpose is to learn to encode U, so as to maximize the

information provided to Y and maximize the compression to X.

Therefore, maximizing the mutual information I (U,Y; θ) between

U and Y can be written as follows:

I (U,Y; θ) =

∫

p
(

u, y|θ
)

log
p
(

u, y|θ
)

p (u|θ) p
(

y|θ
)dydu. (1)

Let I (U,Y; θ) =
∫

p
(

u, y|θ
)

log
p(u,y|θ)

p(u|θ)p(y|θ)
dydu. be a valid

solution to maximize (1). However, given the constraint that

maximizing compression imposes on U, we need to forget as much

information about X as possible. Therefore, the objective function

can be written as follows:

max
θ

RIB (θ) = I (U,Y; θ) − βI (U,X; θ) , (2)

where max
θ

RIB (θ) = I (U,Y; θ) − βI (U,X; θ) , is the Lagrange

multiplier greater than or equal to 0 and controls the trade-off.

I (U,Y; θ) canmakeU to predict Y , and βI (U,X; θ) is a constraint

that U is the minimal sufficient statistic for X.

We refer to the solution process by Alemi et al. (2016) for the

bottleneck of deep variational information. Equation (2) can be

rewritten as follows:

JDeepVIB =
1

N

N
∑

n=1

E
ε∼p(ε)

[

− log q
(

yn|f (xn, ε)
)]

+βKL
[

p (U|xn) , r (U)
]

, (3)

where ε ∼ N (0, I) is denoted as the auxiliary Gaussian noise

variable, and KL is the Kullback–Leibler divergence. It is worth

noting that f is originally an encoding function, but in this study, it

is a neural network. The introduction of f has a re-parameterization

trick (Kingma and Welling, 2013), that is, p (u|x; θ) dx = p (ε) dε,

where u = f (x, ε) can be regarded as a deterministic variable,

in particular, considering that this formula can make the noise

variable independent. Thus, backpropagation is used to optimize

the gradient of the objective function of equation (3). Overall, the

calculation will be easier. Furthermore, a multivariate Gaussian

distribution with a diagonal covariance structure u = f (x, ε) is the

target of the variational approximation posterior, and u = µ + σε

is re-parameterized.

Since our model has multi-view input, we take into account

the nearest neighbor information between each sample. Therefore,

we can further improve the objective function of Deep VIB

in equation (3), andX as a multi-view random variable can be
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expressed as X. The p (U|x) of equation (3) can be expressed

as p
(

U|x1, x2, . . . , xV
)

, with the joint of V available data views

as the condition. We refer to the method in multimodal

variational autoencoder (MVAE) (Wu and Goodman, 2018), where

conditional independence between different modes of U and

approximate p
(

U|xi
)

with q
(

U|xi
)

=
∼
q

(

U|xi
)

p (U) is assumed.
∼
q

(

U|xi
)

is a random encoder for the i-th data view, and p (U) is a

prior. Therefore, the product of multiple single-view posteriors can

be considered equivalent to the joint posterior, which can be written

as follows:

p
(

U|x1, x2, . . . , xV
)

∝

∏V
i=1 p

(

U|xi
)

∏V−1
i=1 p (U)

≈

∏V
i=1

[

q
(

U|xi
)

=
∼
q

(

U|xi
)

p (U)

]

∏V−1
i=1 p (U)

= p (U)

V
∏

i=1

∼
q

(

U|xi
)

.(4)

Equation (4) can be considered the product of experts (PoE).

Considering that the product of Gaussian experts is itself a Gaussian

distribution (Cao and Fleet, 2014), once the probability distribution

is Gaussian, then PoE has a simple solution. Therefore, the objective

formulation of the multi-view-based convolutional variational

information bottleneck can be written as follows:

JMV−CVIB =
1

N

N
∑

n=1

E
ε∼p(ε)

[

− log q
(

yn|f
(

x1n, x
2
n, . . . , x

V
n , ε

))]

+βKL

[

p (U)

V
∏

i=1

∼
q

(

U|xin
)

, r (U)

]

. (5)

2.6. Model implementation details

In MV-CVIB, we mainly input two data views, one is the

microbial relative abundance matrix and the other is the nearest

neighbor information, for each sample generated based on the

microbial relative abundance matrix. The sample nearest neighbor

information matrix can be written as follows:

NNSample

(

a, b
)

=

√

∑

RA
(

ai − bi
)2
, (6)

where NNSample represents the sample nearest neighbor

information matrix, NNSample represents the relative abundance

matrix, and ai and bi represent the i-th element of the row vector

and column vector, respectively.

To avoid overfitting, dropout and early stopping are applied in

this study. Dropout greatly reduces the size of the neural network,

allowing the neural network to learn local features in the data. Early

stopping can stop training early when overfitting occurs. We used

the dedicated stochastic encoder bi to embed different views of gut

microbiome data. fmlp represents a multilayer perceptron (MLP).

For the data of both the above views, we used the SiLU (Hendrycks

and Gimpel, 2016) activation function for fully connected layers

and used dropout (p = 0.2) during training.

We used a logistic regression model q
(

y|u
)

= σ
(

fd (u)
)

with

a logistic sigmoid function in the decoder and fd (u) = wTu +

b. The purpose is to perform binary classification operations. y

models two diagnostic CRC labels, such as mCRC and non-mCRC.

Furthermore, for other published CRC datasets in this study, y

models two diagnosed disease labels, such as CRC or healthy. In

addition, in equation (5) mentioned above, r (U) and r (U) are

spherical Gaussian distributions with K dimensions, where r (U) =

p (U) = N (0, I). We set K = 256 and β = 10−5.

All experiments were performed under Windows 10 with

NVIDIA GTX 1650 GPU and CUDA 10.2 installed, where the

machine’s processor is AMD Ryzen7 4800H. The source code and

data are available at: https://github.com/cuizhensdws.

2.7. Performance evaluation

To evaluate the classification performance of the model more

accurately and comprehensively, inspired by DeepMicro, we design

a similar evaluation scheme. The ratio of the training set and test

set in the mCRC dataset is adjusted to 8:2. It is worth noting

that the random partition seed is also set the same as DeepMicro,

which guarantees a fair random training-test split. Furthermore,

for the published CRC dataset, we also adopted the same dataset

partitioning scheme. The above settings can further reduce the

information leakage and improve the efficiency of the response

model more accurately.

We used a stratified 5-fold cross-validation applied to the

training set and calculated the AUC score through the validation

set, and the epoch with the best parameters among all epochs was

selected. The AUC can be written as follows:

AUC =

∑

i∈positive class ranki −
M∗(1+M)

2

M ∗ N
(7)

whereM is the number of positive samples, and Nis the number of

negative samples.

3. Results

3.1. Predictive performance of MV-CVIB on
mcrc datasets

To evaluate the performance of MV-CVIB, we compared

the existing advanced methods, including MVIB (Grazioli et al.,

2022), PopPhy-CNN (Reiman et al., 2020), DeepMicro (Oh and

Zhang, 2020), random forest (RF), multilayer perceptron (MLP),

and SVM. To be fair, these methods are executed multiple

times. Considering that different devices and parameter settings

may affect the prediction results, we can only ensure that each

method is relatively optimal rather than absolutely optimal. It

is important to note that DeepMicro is a framework consisting

mainly of dimension reductionmodules and classificationmodules.

The DeepMicro model does not specify which combination has

the best predictive performance. Therefore, we compared all the

method combinations.

Our method consists of two parts, one is MV-CVIB which

contains the nearest neighbor information, and the other is MV-

CVIB (single view) which uses only microbiome abundance data.
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FIGURE 4

Comparison of AUC values of our method with state-of-the-art

methods on the mCRC dataset. The methods with asterisks are all

from the DeepMicro model, and these methods are a combination

of methods in DeepMicro. The best performing AUC is indicated in

black bold.

For PopPhy-CNN, we modified the source code so that it is roughly

consistent with our model framework. The original PopPhy-

CNN provided different experimental procedures. To ensure

the consistency of the verification test, we made corresponding

framework adjustments. For SVM and RF, we used the same grid

search to set the hyperparameters, referring to MetAML (Pasolli

et al., 2016). Figure 4 shows the AUC values for each method.

Specifically, the AUC value of MV-CVIB reached 0.917, better

than 0.893 of MV-CVIB (single view). In other words, the nearest

neighbor information helped improve the prediction performance

of MV-CVIB by 2.4%. Moreover, the AUC value of MV-CVIB and

MV-CVIB (single view) both exceeded that of MVIB, and the AUC

value of MV-CVIB is 4.1% higher than that of MVIB. Slightly lower

than MVIB is PopPhy-CNN, which has an AUC value of 0.864.

Multiple combinations in the DeepMicro framework achieve an

AUC value >0.75.

3.2. Predictive performance of MV-CVIB on
CRC datasets in published studies

In this study, to more comprehensively evaluate our predictive

model, we also performed predictive experiments on three CRC

datasets. Figure 5 shows the AUC values for each method.

First, on the Colorectal dataset, the AUC value of the proposed

model was 0.818, while the AUC value of MV-CVIB (single view)

was 0.814, both of which were superior to other advanced models.

Interestingly, RF and PopPhy-CNN both have the same AUC of

0.803. The AUC of MVIB is only 0.78, and the performance of the

model is mediocre. In DeepMicro, the AUC value of AE + MLP

was 0.799. The predictive effect of CAE+MLP was slightly lower

than that of AE+MLP, and the AUC was 0.791.

Second, on the Colorectal-EMBL dataset, as shown in Figure 5,

the AUC value for RF is 0.89, which is higher than any other

method. This was followed by MV-CVIB and MV-CVIB (single

view) with AUC values of 0.825 and 0.821, respectively. Compared

with MVIB, the prediction performance of MV-CVIB is improved

by 1.1%. Compared with RF, the prediction performance of MV-

CVIB is reduced by 6.5% and that of MVIB is reduced by 7.6%. It

is worth noting that we cannot get the predicted results of PopPhy-

CNN because there is an infinite loop in the experiment process.

Finally, on the Early-Colorectal-EMBL dataset, as shown in

Figure 5, none of the methods has an AUC value above 0.6.

According to the previous ANOSIM analysis, there are differences

between the groups on the Early-Colorectal-EMBL dataset but not

significant. Therefore, we speculate that this may be a reason for

the AUC of each method to be less than 0.6. Compared with

other advanced methods, MV-CVIB achieved an AUC value of

0.589, while MV-CVIB (single view) was slightly lower, with an

AUC value of 0.586. Compared with MVIB, MV-CVIB improved

performance by 4.6%. Once again, RF (AUC = 0.582) showed

excellent performance on this dataset, outperforming all methods

except ours. Moreover, in DeepMicro, any autoencoder combined

with RF achieved a high AUC value. As on the Colorectal-EMBL

dataset, PopPhy-CNN still produces an infinite loop on the Early-

Colorectal-EMBL dataset.

3.3. Ablation experiments

Considering that we have introduced multi-view, convolution,

and pooling modules in MV-CVIB, to verify the impact of this

module on the overall performance of the method, we set up

multiple ablation experiments on the mCRC dataset and three CRC

datasets. Figure 6 shows the AUC values of different combinations

of the proposed method on different datasets. From the results of

the ablation experiments, it can be observed that on the mCRC

dataset, the impact of multi-view on the performance of themethod

is slightly higher than that of the convolution module. However,

on the three CRC datasets, the impact of the convolution module

on the performance of the method is slightly higher than that of

the multi-view.

Overall, according to the results of the ablation experiments, we

speculate that when the number of samples is small, multi-viewmay

be easier to take advantage of the prediction performance; when the

number of samples is large, the convolution module may be more

likely to take advantage of the prediction performance.

3.4. The gut microbial diversity is di�erent
in mcrc and non-mcrc patients

The stacked bar graphs of the microbiota (phylum level)

of the non-mCRC group and the mCRC group are shown in

Figure 7A. In their gut, the microbial community was dominated

by Firmicutes and Proteobacteria. Among them, a small number
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FIGURE 5

Comparison of AUC values of our method with state-of-the-art methods on three CRC datasets. The methods with asterisks are all from the

DeepMicro model, and these methods are a combination of methods in DeepMicro. On the Colorectal dataset, we follow the partial AUC results

from DeepMicro. Specifically including AE + SVM*, VAE + SVM*, and CAE + RF*, the results of other combinations are derived from this study. Since

DeepMicro did not use Colorectal-EMBL and Early-Colorectal-EMBL datasets, the results on these two datasets are also derived from this study. The

best performing AUC is indicated in red font. (A) The AUC value of each method on the Colorectal dataset. (B) The AUC value of each method on the

Colorectal-EMBL dataset. (C) The AUC value of each method on the Early-Colorectal-EMBL dataset.

of Verrucomicrobia were present in a 61-year-old mCRC patient.

It can be observed from the figure that as the age of mCRC

patients increases, the relative abundance of Firmicutes tends to

decrease overall.

As shown in Figure 7B, to better describe the microbial

richness and uniformity of the intestinal tract, we used the

alpha diversity index to measure the intestinal ecosystem from

different perspectives (Wang et al., 2018). It specifically includes

eight indicators: richness, Shannon, Simpson, Pielou, invsimpson,

Chao1, ACE, and goods coverage. Taken together, compared

with non-mCRC patients, the number and diversity of intestinal

communities in mCRC patients tended to increase, and the

evenness index of intestinal communities in mCRC patients was

significantly increased. In addition, from the perspective of goods

coverage, the indices of non-mCRC and mCRC samples are close

to 1, which indicates that the sequencing depth is reasonable, that

is, the depth has basically covered all species in the sample. We also

performed alpha diversity analysis on the three CRC datasets, and

the specific analysis results are included in Supplementary material.

3.5. Potential biomarker identification with
statistical di�erences

To further mine the differences between non-mCRC and

mCRC samples, we used STAMP to output significantly different

OTUs within the 95% confidence interval (Parks et al., 2014).

As shown in Figure 7C, the mean proportion value at OTU83

was significantly higher in mCRC patients than in non-mCRC

patients. Second, at OTU99, OTU215, and OTU232, mCRC

patients were also higher than non-mCRC patients. Interestingly,

the taxonomy of OTU215 was accurate to the species, specifically

Propionibacterium acnes. Not only that, we also used the LDA effect

size (LEfSe) (Segata et al., 2011) analysis to discover and explain

the biomarkers with statistical differences between non-mCRC and

mCRC patients. As shown in the clade diagram of Figure 7D, yellow

indicates species without significant differences, and both red and

green indicate significant differences. Among them, green nodes

FIGURE 6

AUC comparison of di�erent combinations of the proposed method

on di�erent datasets.

represent microbial groups that play an important role in non-

mCRC samples, and red nodes represent microbial groups that play

an important role inmCRC samples. In the histogram of LDA value

distribution in Figure 7E, we can clearly find that there are far more

biomarkers with statistical differences in mCRC samples than in

non-mCRC samples. Therefore, this may be more conducive to the

prediction of metastatic disease in CRC patients, so as to make early

diagnosis and treatment.

3.6. Patients’ age and metastatic risk
assessment

As mentioned earlier in this study, with the development

of a standardized multidisciplinary team consultation
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FIGURE 7

(A) Microbiota (phylum level) stacked bar graphs of the non-mCRC group and mCRC group. (B) To better describe the microbial richness and

uniformity of the intestinal tract, we used the alpha diversity index to measure the intestinal ecosystem from di�erent perspectives. (C) To further

mine the di�erences between non-mCRC and mCRC samples, we used STAMP to output significantly di�erent OTUs within the 95% confidence

interval. (D) LDA e�ect size (LEfSe) analysis was used to discover and interpret biomarkers that were statistically di�erent between non-mCRC and

mCRC patients. (E) Histogram of the distribution of LDA values.

model, the survival rate of non-mCRC patients has been

significantly improved. However, the metastatic nature of

non-mCRC cannot be ignored, and the therapeutic effect of

most chemotherapy drugs on mCRC is limited. Therefore,

compared with non-mCRC, the survival rate of mCRC is

extremely low. To assess the relationship between patient age

and metastatic risk of non-mCRC, we constructed a risk model

to obtain a risk score. Patients will be divided into high-risk

and low-risk groups based on risk scores. Ultimately, we

explored the relationship between microbiota expression and

patient survival.

As shown in Figure 8, patients with risk scores were divided

into high-risk and low-risk groups according to the cutoff value.

Combining Figures 8A, B, it can be observed that as the risk

score increases, the age of patients presents a downward trend,

and the age span of the high-risk group is larger than that of the

low-risk group. There is a possibility of cancer metastasis in all

segments. It can be observed from Figure 8C that the expression

of Desulfovibrionales showed a trend from high to low from left to

right, while Thermoanaerobacterales and Actinomycetales showed

a trend of gradually increasing expression. From Figures 8A, C, it

can be observed that Thermoanaerobacterales and Actinomycetales

are positively correlated with risk scores, and Desulfovibrionales

are negatively correlated with risk scores. Other flora showed

irregular expression trends. Desulfovibrionales produce hydrogen

sulfide, a genotoxic compound in the gut. This substance can

destabilize the genome or chromosomes (Dahmus et al., 2018;

Zhao et al., 2022). Several recent studies have shown that

genomic instability is found in more than 80% of sporadic

CRCs. Actinomycetales are an important gut flora. Actinomycetales

involved in CRC development have different characteristics

compared with healthy microbiota (Rebersek, 2021; Li et al., 2023).
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FIGURE 8

(A) According to the risk value, the high risk group and the low risk group are divided. (B) Scatter plot of the relationship between patient age and risk

status. (C) The heat map of the abundance expression of the bacterial group (order level).

Overall, the higher the risk score, the worse the prognosis,

and the higher the expression of Desulfovibrionales, the

better the prognosis, which may be the beneficial flora

before cancer metastasis; while the higher the expression of

Thermoanaerobacterales and Actinomycetales, the worse the

prognosis, which may be the bad flora after cancer metastasis.

4. Discussion

Many complex reasons and limitations make microbiome-

based disease prediction a challenging task. It is mainly reflected as

follows: (1) The composition of the human microbial community

is very complex, and the boundaries between the bacterial

communities are fuzzy. (2) There are various ways to generate

microbial community characteristic data, which leads to data

heterogeneity. (3) Human health status is dynamic rather than

fixed, and healthy samples are not absolute, which may increase

data noise and outliers. (4) Conventional microbiome-based

disease prediction mostly adopts the health-disease classification

method, ignoring the deterioration process of the disease. We

adopted a new classification schema: disease-disease instead of

health-disease. We focussed on identifying more severe diseases,

especially cancer and cancer metastases, from disease samples.

This facilitates exploration and reveals the underlying properties of

disease exacerbation. It is meaningful for non-mCRC patients. We

can obtain potential biomarkers through the analysis of differences

in the bacterial flora of patients and explore the biological process

and development rules of CRC metastasis on the basis of the

microbiome. This is conducive to further expanding the treatment

options for non-mCRC patients and improving the prognosis of

non-mCRC patients.

We employed a variety of microbiome analysis methods

to explore the diversity of non-mCRC and mCRC. From the

experimental results, the communities of non-mCRC and mCRC

were quite different, the distribution of the flora was complex

and diverse, and the flora composition of different samples

was different. Compared with the state-of-the-art methods for

microbiome-based disease prediction, the proposed method MV-

CVIB achieved higher AUC values on the mCRC dataset. In

addition, in order to more comprehensively evaluate MV-CVIB

and verify its generalization ability, we collected datasets from

three published studies and conducted experiments. The number

of samples in the three public CRC datasets does not exceed

200, which belongs to high-dimensional small sample data. This

limitation may affect the experimental results. Therefore, in

future, we can use transfer learning or data augmentation. The

experimental results show that MV-CVIB achieves higher AUC

values on two of the three datasets. Based on the predicted

results, we performed a statistical analysis of potential biomarkers

in non-mCRC and mCRC. Finally, we modeled the risk score,

explored the age trend of the risk score, and screened out

those bacterial orders that had positive and negative effects

on patients.
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5. Conclusion

In this study, we propose a deep learning approach based

on a multi-view convolutional variational information bottleneck

for the prediction of mCRC. The multi-view contains species

abundance data and sample field information, where the sample

neighborhood information is obtained based on the species

abundance data, which ensures that our method will not introduce

additional noise when inputting multi-view data, and has a

better time and space complexity. Our results demonstrate that

the method has good predictive performance. However, on the

Colorectal-EMBL dataset, all deep learning methods are not as

effective as RF, which may be related to the internal structural

characteristics of the dataset. We explored the degree of difference

between non-mCRC and mCRC from various perspectives,

analyzed those statistically significant differences in flora, and

constructed an age risk assessment model to explore the rules of age

and cancer metastasis. Of course, there are also some deficiencies in

this study, mainly two points. First, due to concerns about patient

privacy and medical ethics, the number of samples obtained is

small, which may cause the model to fall into overfitting to small

samples. Second, the prediction model is only for CRC data and

does not consider other disease data, which may lead to a lack of

generalizability of the model. We will also develop more effective

methods for more complex microbiome-based disease phenotype

prediction and improve the scalability of the prediction method as

much as possible.
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