386 research outputs found

    Global patterns, trends, and drivers of water use efficiency from 2000 to 2013

    Get PDF
    Water use efficiency (WUE; gross primary production [GPP]/evapotranspiration [ET]) estimates the tradeoff between carbon gain and water loss during photosynthesis and is an important link of the carbon and water cycles. Understanding the spatiotemporal patterns and drivers of WUE is helpful for projecting the responses of ecosystems to climate change. Here we examine the spatiotemporal patterns, trends, and drivers of WUE at the global scale from 2000 to 2013 using the gridded GPP and ET data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our results show that the global WUE has an average value of 1.70 g C/kg H2O with large spatial variability during the 14-year period. WUE exhibits large variability with latitude. WUE also varies much with elevation: it first remains relatively constant as the elevation varies from 0 to 1000 m and then decreases dramatically. WUE generally increases as precipitation and specific humidity increase; whereas it decreases after reaching maxima as temperature and solar radiation increases. In most land areas, the temporal trend of WUE is positively correlated with precipitation and specific humidity over the 14-year period; while it has a negative relationship with temperature and solar radiation related to global warming and dimming. On average, WUE shows an increasing trend of 0.0025 g C·kg−1 H2O·yr−1 globally. Our global-scale assessment of WUE has implications for improving our understanding of the linkages between the water and carbon cycles and for better projecting the responses of ecosystems to climate change

    Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction

    Get PDF
    Thermal entanglement of a two-qubit Heisenberg chain in presence of the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg chains as quantum channel are investigated. It is found that the DM interaction can excite the entanglement and teleportation fidelity. The output entanglement increases linearly with increasing value of input one, its dependences on the temperature, DM interaction and spin coupling constant are given in detail. Entanglement teleportation will be better realized via antiferromagnetic spin chain when the DM interaction is turned off and the temperature is low. However, the introduction of DM interaction can cause the ferromagnetic spin chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the model is needed to realize the entanglement teleportation regardless of antiferromagnetic or ferromagnetic spin chains.Comment: 1 tex;5eps. accepted by Physical Review

    31P NMR Investigation of the Superconductor LiFeP (Tc = 5 K)

    Full text link
    We investigate the static and dynamic spin susceptibility of the 111 type Fe-based superconductor LiFeP with Tc ~ 5 K through the measurement of Knight shift 31K and the spin-lattice relaxation rate 1/T1 at 31P site by nuclear magnetic resonance. The constant 31K, small magnitudes of 1/T1T, along with the resistivity rho ~ T^2 all point to the weak spin correlations in LiFeP. 1/T1T display small enhancement toward Tc, indicating that the superconductivity is intimately correlated with the antiferromagnetic spin fluctuations.Comment: Accepted for publication in EP

    The Magnetic Properties of 1111-type Diluted Magnetic Semiconductor (La1−x_{1-x}Bax_{x})(Zn1−x_{1-x}Mnx_{x})AsO in the Low Doping Regime

    Full text link
    We investigated the magnetic properties of (La1−x_{1-x}Bax_{x})(Zn1−x_{1-x}Mnx_{x})AsO with xx varying from 0.005 to 0.05 at an external magnetic field of 1000 Oe. For doping levels of xx ≤\leq 0.01, the system remains paramagnetic down to the lowest measurable temperature of 2 K. Only when the doping level increases to xx = 0.02 does the ferromagnetic ordering appear. Our analysis indicates that antiferromagnetic exchange interactions dominate for xx ≤\leq 0.01, as shown by the negative Weiss temperature fitted from the magnetization data. The Weiss temperature becomes positive, i.e., ferromagnetic coupling starts to dominate, for xx ≥\geq 0.02. The Mn-Mn spin interaction parameter ∣\mid2J/kB2J/k_B∣\mid is estimated to be in the order of 10 K for both xx ≤\leq 0.01 (antiferromagnetic ordered state) and xx ≥\geq 0.02 (ferromagnetic ordered state). Our results unequivocally demonstrate the competition between ferromagnetic and antiferromagnetic exchange interactions in carrier-mediated ferromagnetic systems.Comment: 9 pages, 3 figure

    (Sr3La2O5)(Zn1-xMnx)2As2: A Bulk Form Diluted Magnetic Semiconductor isostructural to the "32522" Fe-based Superconductors

    Full text link
    A new diluted magnetic semiconductor system, (Sr3La2O5)(Zn1-xMnx)2As2, has been synthesized and characterized. 10% Mn substitution for Zn in bulk form (Sr3La2O5)Zn2As2 results in a ferromagnetic ordering below Curie temperature, TC ~ 40 K. (Sr3La2O5)(Zn1-xMnx)2As2 has a layered crystal structure identical to that of 32522-type Fe based superconductors, and represents the fifth DMS family that has a direct counterpart among the FeAs high temperature superconductor families.Comment: Accepted for publication in EP

    Influence of catwalk design parameters on the galloping of constructing main cables in long-span suspension bridges

    Get PDF
    A main cable of a long-span suspension bridge is semi-surrounded by a catwalk during construction. Thus, design parameters of a catwalk may have influences on the galloping stability of a main cable during construction. To study the influence of catwalk design parameters on the galloping of steepled main cables, two main foci have been conducted. Firstly, the aerodynamic coefficients of the catwalk with actual design parameters are obtained by numerical simulation based on computational fluid dynamics (CFD), and the numerical results are compared with those of the previous wind tunnel test. Several typical main cables with different cross sections of a long-span suspension bridge during construction are selected, and their Den Hartog coefficients are obtained based on the numerical simulation considering the aerodynamic influences of the catwalks. Then four typical working conditions of a main cable which have great potential to occur galloping are selected based on the galloping analyze, and their aerodynamic coefficients considering the influence of the catwalk with different design parameters are obtained. The influence of the catwalk design parameters on galloping of the main cables is analyzed based on the Den Hartog criterion. Results indicate that catwalk design parameters have evident influences on aerodynamic coefficients and galloping of the main cables. The parameters of the catwalk which are favorable for suppressing the galloping of the main cables are determined, which establish a good guideline for the galloping-resistant design of the catwalk-main cable system on suspension bridges
    • …
    corecore