
University of New Hampshire
University of New Hampshire Scholars' Repository

Earth Systems Research Center Institute for the Study of Earth, Oceans, and Space
(EOS)

10-12-2015

Global patterns, trends, and drivers of water use
efficiency from 2000 to 2013
Bao-Lin Xue
Chinese Academy of Sciences

Qinghua Guo
University of California at Merced

Alvarez Otto
University of California at Merced

Jingfeng Xiao
University of New Hampshire, Durham, j.xiao@unh.edu

Shengli Tao
Chinese Academy of Sciences

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/ersc

This Article is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New
Hampshire Scholars' Repository. It has been accepted for inclusion in Earth Systems Research Center by an authorized administrator of University of
New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Xue, B., Guo, Q., Otto, A., Xiao, J., Tao, S., Li, L. (2015). Global patterns, trends, and drivers of water use efficiency from 2000 to 2013.
Ecosphere 6(10):174. https://dx.doi.org/10.1890/ES14-00416.1

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fersc%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ersc?utm_source=scholars.unh.edu%2Fersc%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/eos?utm_source=scholars.unh.edu%2Fersc%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/eos?utm_source=scholars.unh.edu%2Fersc%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ersc?utm_source=scholars.unh.edu%2Fersc%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.1890/ES14-00416.1
mailto:nicole.hentz@unh.edu


Authors
Bao-Lin Xue, Qinghua Guo, Alvarez Otto, Jingfeng Xiao, Shengli Tao, and Le Li

This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/ersc/153

https://scholars.unh.edu/ersc/153?utm_source=scholars.unh.edu%2Fersc%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages


Global patterns, trends, and drivers
of water use efficiency from 2000 to 2013

BAO-LIN XUE,1 QINGHUA GUO,1,2,� ALVAREZ OTTO,2 JINGFENG XIAO,3 SHENGLI TAO,1 AND LE LI
1

1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences,
No. 20 Nanxincun, Xiangshan, Beijing 100093 China

2School of Engineering, Sierra Nevada Research Institute, University of California at Merced, Merced, California 95343 USA
3Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire,

Durham, New Hampshire 03824 USA

Citation: Xue, B.-L., Q. Guo, A. Otto, J. Xiao, S. Tao, and L. Li. 2015. Global patterns, trends, and drivers of water use

efficiency from 2000 to 2013. Ecosphere 6(10):174. http://dx.doi.org/10.1890/ES14-00416.1

Abstract. Water use efficiency (WUE; gross primary production [GPP]/evapotranspiration [ET])

estimates the tradeoff between carbon gain and water loss during photosynthesis and is an important

link of the carbon and water cycles. Understanding the spatiotemporal patterns and drivers of WUE is

helpful for projecting the responses of ecosystems to climate change. Here we examine the spatiotemporal

patterns, trends, and drivers of WUE at the global scale from 2000 to 2013 using the gridded GPP and ET

data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our results show that

the global WUE has an average value of 1.70 g C/kg H2O with large spatial variability during the 14-year

period. WUE exhibits large variability with latitude. WUE also varies much with elevation: it first remains

relatively constant as the elevation varies from 0 to 1000 m and then decreases dramatically. WUE generally

increases as precipitation and specific humidity increase; whereas it decreases after reaching maxima as

temperature and solar radiation increases. In most land areas, the temporal trend of WUE is positively

correlated with precipitation and specific humidity over the 14-year period; while it has a negative

relationship with temperature and solar radiation related to global warming and dimming. On average,

WUE shows an increasing trend of 0.0025 g C�kg�1 H2O�yr�1 globally. Our global-scale assessment of WUE

has implications for improving our understanding of the linkages between the water and carbon cycles and

for better projecting the responses of ecosystems to climate change.
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INTRODUCTION

Water use efficiency (WUE) is the carbon

uptake per unit water consumed by vegetation

(g C/kg H2O). It is an integrated physiological

indicator and measures the tradeoff between

carbon gain and water loss during photosynthe-

sis (Farquhar et al. 1989, Cowan 2002). WUE is an

important link of the carbon and water cycles,

and improved understanding of its patterns and

drivers is essential for the prediction of ecosys-

tem responses to future climate change. For

example, as a useful tool for water and carbon

cycle simulation and prediction, WUE is used as

an parameter in land surface or ecosystem

models for the calculation of carbon assimilation

in cases where evapotranspiration (ET) is known

(Morén et al. 2001, Van Wijk and Bouten 2002,
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Tang et al. 2006, Wang et al. 2014).
Theoretically, WUE should be the ratio of plant

productivity to transpiration rather than to ET
(the sum of evaporation from ground and
canopy intercepted water and canopy transpira-
tion). However, it remains a challenge to parti-
tion ET observations to plant transpiration and
evaporation from soils and canopies (Baldocchi
2003, 2008). Therefore, the ratio of GPP to ET has
been widely used to measure WUE (Yu et al.
2008, Xiao et al. 2013). Thus, WUE is typically
calculated as the ratio of gross primary produc-
tion (GPP) to ET, i.e., WUE ¼ GPP/ET (e.g.,
Reichstein et al. 2007, Lu and Zhuang 2010, Mu
et al. 2011a, Brümmer et al. 2012). An alternative
definition of WUE is the ratio of net primary
productivity (NPP) to ET (e.g., Dan and Ji 2007,
Tian et al. 2011). The eddy covariance (EC)
technique provides continuous measurements of
net ecosystem exchange (NEE) and latent heat
flux (or ET). NEE is routinely partitioned into
GPP and ecosystem respiration. Therefore WUE,
the ratio of GPP to ET, can be directly calculated
from EC GPP and ET data.

Although a number of studies have assessed
the patterns of WUE and its responses to climate
(Niu et al. 2011, Linderson et al. 2012, Xiao et al.
2013), broad-scale research on WUE is limited
mainly because of the lack of data (i.e., GPP and
ET) at regional to global scales (Law et al. 2002,
Reichstein et al. 2007, Beer et al. 2009, Keenan et
al. 2013). Several studies examined the spatial
patterns and controlling factors of WUE at
regional or national scales using GPP and ET
derived from EC flux towers (e.g., Beer et al.
2009, Keenan et al. 2013, Xiao et al. 2013) or
process-based ecosystem models (e.g., Tian et al.
2010). Relatively few studies have assessed the
magnitude, patterns, and trends of WUE at the
global scale (Ito and Inatomi 2012).

Numerous studies have been conducted to
investigate the influences of meteorological and
morphological variables on WUE. Previous stud-
ies have examined the controlling effects of
precipitation, temperature, solar radiation, and
specific humidity (or vapor pressure deficit;
Scanlon and Albertson 2004, Hu et al. 2008, Yu
et al. 2008, Yang et al. 2010, Mu et al. 2011a).
Several studies also examined the morphological
effects of leaf area index (LAI) on WUE (Beer et
al. 2009, Huang et al. 2010, Keenan et al. 2013).

However, the relative effects of these factors on
WUE are not well understood. For example, Yu
et al. (2008) found that WUE decreased with
increasing precipitation for three forest sites in
eastern China, whereas the opposite phenome-
non was observed by Niu et al. (2011). A
synthesis study by Keenan et al. (2013) showed
that the meteorological variables had little effect
on the increase in WUE at forest sites, and the
main factor was increasing atmospheric CO2

concentrations. The differences in these findings
can be partly attributed to the different spatio-
temporal scales, biomes, and locations of these
studies.

Here we used a global GPP and ET dataset
derived from MODIS over the period from 2000
to 2013 to assess the spatial patterns, trends, and
drivers of WUE at the global scale. Specifically,
we first examined the magnitude and spatial
patterns of WUE. We then assessed the effects of
morphological (LAI) and meteorological (precip-
itation, temperature, solar radiation, and specific
humidity) drivers on WUE. We also assessed the
interannual variability and trends of WUE over
the 14-year period.

MATERIALS AND METHODS

GPP and ET data
We used the global GPP (Running et al. 2004,

Zhao et al. 2005) and ET (Mu et al. 2007, 2011b)
datasets derived from MODIS. The global GPP
and ET datasets are both freely available on the
Numerical Terradynamic Simulation Group web-
site (http://www.ntsg.umt.edu). The MODIS GPP
data (MOD17) are calculated as a multi-product
function (Heinsch et al. 2003)

GPP ¼ emax 3 0:45 3 SWrad 3 FPAR 3 f VPD 3 fTmin

where emax is the maximum light use efficiency;
SWrad is the short-wave downward solar radi-
ation, of which 45% is photosynthetically active
radiation (PAR); FPAR is the fraction of PAR
absorbed by plants, which can be derived from
MODIS products (MOD15A2, see below); fVPD
and fTmin are the reduction scalars from water
stresses (high daily vapor pressure deficit, VPD)
and low temperature (low daily minimum
temperature Tmin), respectively. The MOD17
GPP data were calculated globally at a 1-km
resolution at 8-day, monthly (MOD17A2), and
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annual (MOD17A3) intervals. A detailed descrip-
tion of the calculation of the MOD17 GPP can be
found in Heinsch et al. (2003).

The MODIS ET product (MOD16) was pro-
duced by Mu et al. (2007, 2011b) based on the
Penman–Monteith equation (Monteith 1964). At
the global scale, MODIS land cover (MOD12Q1;
Friedl et al. 2010), MODIS Collection 5 FPAR/LAI
(MOD15A2; Myneni et al. 1997) and Collection 4
0.05-degree CMG MODIS albedo (Jin et al. 2003,
Salomon et al. 2006) are used as the model
inputs. The MODIS ET product is available
globally at a resolution of 1 km. The improved
version of annual MODIS ET products
(MOD16A3) was used in this study and was
downloaded from the Numerical Terradynamic
Simulation Group website (ftp://ftp.ntsg.umt.
edu/). The improved ET product is driven by a
consistent version of meteorological variables
from the GMAO (Global Modeling and Assim-
ilation Office), and the ET was estimated with
reasonable accuracy (Mu et al. 2011b).

In situ WUE database
We obtained in situ WUE values from the

literature in order to evaluate the accuracy of the
global WUE calculated from MODIS GPP and
ET. Only sites with at least two years of data
were selected because sites with one year of data
generally did not cover the whole year. We
obtained a total of 141 site years of WUE data
from 34 flux tower stations (Appendix: Table A1).
These sites encompass a range of ecosystems and
climate types.

Land cover, elevation, LAI, and
meteorological data

We used the global land cover map of
MOD12Q1, which also has 1-km spatial resolu-
tion. As in Zhao and Running (2010), the
University of Maryland (UMD) land cover
classification scheme was used in our analysis.
The UMD classification scheme consists of 11
biomes: evergreen needleleaf forest (ENF), ever-
green broadleaf forest (EBF), deciduous needle-
leaf forest (DNF), deciduous broadleaf forest
(DBF), mixed forest (MF), closed shrublands
(CSH), open shrublands (OSH), woody savannas
(WSA), savannas (SA), grasslands (GRA) and
croplands (CRO).

We obtained elevation data from the NASA

Shuttle Radar Topographic Mission (SRTM) with
a resolution of 1 km (http://srtm.csi.cgiar.org/).
The LAI datasets are from MOD15A2 (https://
lpdaac.usgs.gov/). To investigate the regression
relationship between LAI and WUE on the
annual scale, we calculated the average 8-day
values within a year as a substitute for the annual
average LAI.

The meteorological variables were obtained
from the National Centers for Environmental
Prediction, National Center for Atmospheric
Research (NCEP-NCAR) Reanalysis II. The
NCEP reanalysis dataset is freely available to
the research community (Kanamitsu et al. 2002;
http://www.esrl.noaa.gov/). The meteorological
variables are available four times daily, and can
be aggregated to daily, monthly, and annual time
scales. These variables are in a Gaussian grid
(T62, 192 3 94) projection and have a spatial
resolution of 1.8888 3 1.8888 after spline interpo-
lation. We resampled the NCEP data to 1-km
resolution to match the spatial resolution of the
GPP and ET data.

Data analysis
We used the MODIS GPP and ET to calculate

WUE. For each 1-km grid cell, we calculated
annual WUE from annual GPP and ET for each
year over the period from 2000 to 2013; annual
WUE values were then averaged over the 14
years to calculate mean annual WUE. Values
above 1000 g C/kg H2O were treated as abnormal
and neglected throughout our research. We used
the in situ WUE database to evaluate the
accuracy of the global WUE dataset. It should
be noted that there is scale mismatch for the
comparison of in-situ and MODIS WUE values.

The interannual variability for the average 14-
year WUE of each pixel was calculated using the
bootstrap method (e.g., Zhang et al. 2013). The
WUEs from the 14 observations were resampled
1000 times, and then the corresponding mean of
each set of resampled data was calculated. Then,
the 95% confidence limits for the resulting
resampled data were calculated, and the width
of the interval between the upper and lower
limits was treated as the uncertainty level (at a
95% confidence level).

Regression analysis was conducted between
WUE and different geographical (latitude and
elevation), morphological (LAI), and meteoro-
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logical variables (precipitation, near surface air
temperature [air temperature afterwards], down-
ward short-wave solar radiation [solar radiation
afterwards], and specific humidity). A specific
analysis of the WUE according to different
biomes was also conducted. The WUE trend
was investigated by linear regression analysis.
For each 1-km grid cell, we calculated the linear
trend of WUE by regressing WUE against time.

RESULTS

Comparison of in situ and MODIS WUE data
We compared our global WUE dataset derived

from MODIS GPP and ET data products against
the eddy covariance (EC)-derived WUE database
(Fig. 1a). There is a moderately strong relation-
ship between the global WUE and EC-WUE (R2¼
0.55, p , 0.001). Compared with EC values, the
MODIS WUE slightly underestimated WUE for
WUE values above 2 g C/kg H2O and slightly
overestimated WUE for WUE values below 2 g
C/kg H2O. This systematic error may be caused
by the difference between the flux tower fetch
and the MODIS resolution (Kim et al. 2012).
Another reason may be that flux towers generally
focus on high production ecosystems (Turner et
al. 2006). It should also be noted that EC-
calculated GPP is derived from the partitioning
of net ecosystem exchange that often uses

empirical or process-based modeling (Desai et
al. 2008). And therefore, Fig. 1 is not strictly a
comparison of remote sensing to direct in situ
observations.

The regression relationship much improves
when we further compared at the biome level (R2

¼ 0.66, p , 0.001). All of the biomes are scattered
around the 1:1 line, except a relatively underes-
timated value for DBF (2.41 and 1.80 g C/kg H2O
for observed and MODIS estimated, respective-
ly). Though observed WUE for CRO is larger
than that for GRA, this value is also underesti-
mated and is found be the least among all
MODIS biomes (Fig. 1b).

Global patterns of WUE
Over the 14 years analyzed, the global average

GPP and ETwere 879.48 g C�m�2�yr�1 and 518.83
mm/yr and this results in an average WUE of
1.70 g C/kg H2O. WUE shows a large spatial
variability at the global scale (Fig. 2). Large WUE
values are found in humid and semi-humid areas
of the northern hemisphere, such as Europe,
central North America, and central and eastern
Siberia, with relatively small interannual varia-
tions (Fig. 2b). WUE also shows large values in
semi-arid areas, such as in the northern African
savannas and open shrublands in southern South
America and central Australia; however, WUE in
these areas are with large interannual variations

Fig. 1. Comparison of MODIS and observed water use efficiency (WUE, g C/kg H2O) for (a) different sites and

(b) averaged values of different biomes. The dash line shows the 1:1 line. The vegetation classification is based on

the University of Maryland (UMD) scheme. The abbreviations are defined as follows: ENF, evergreen needleleaf

forest; EBF, evergreen broadleaf forest; DBF, deciduous broadleaf forest; WSA, woody savannas; GRA

grasslands; CRO, croplands. Error bars show the standard deviation of each biome for observed (horizontal) and

MODIS-derived (vertical) values.
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(Fig. 2b). In tropical areas such as the Amazonian

Plain, central Africa, and Southeast Asia, the

WUE shows moderate values with relatively

small interannual variation. In contrast, the

WUE values are small in areas with harsh

meteorological conditions and less vegetation,

such as the Arctic and Tibetan Plateau.

WUE is significantly different among biomes

(one-way ANOVA, a ¼ 0.05; Fig. 3). In general,

forests have the largest WUE among all biomes;

closed shrublands also have relatively large WUE

values but with large uncertainty; Croplands

Fig. 2. (a) Spatial patterns of global water use efficiency (WUE, g C/kg H2O) calculated as gross primary

production (GPP)/evapotranspiration (ET); (b) interannual variability in WUE. The global WUE is calculated as

the 14-year average from 2000 to 2013. The points in panel (a) show the validation sites from published

literatures. The internal variability was calculated by bootstrap method and the results shown are within 95%

confidence intervals. A large value shows large interannual variation of WUE in panel (b).
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have intermediate values; grasslands have the
lowest WUE (1.49 g C/kg H2O). Among all forest
types, deciduous broadleaf forest has the largest
WUE, 2.31 g C/kg H2O.

WUE is relatively stable as the elevation
increases from 0 to 1100 m, and then rapidly
decreases at higher elevations (Fig. 4). A maxi-
mum of 1.97 g C/kg H2O is found at an elevation
of 1105 m. WUE has a strong, negative relation-
ship with elevation for elevation between 1105
and 5000 m (WUE ¼�0.0004 [elevation] þ 2.34,
R2¼ 0.94, p , 0.001). Above 5000 m, the WUE is
close to zero.

Globally, WUE varies much with latitude,
especially for the southern hemisphere (Fig. 4).
WUE begins to increase at ;�50.58 S and reaches
a maximum of 3.21 g C/kg H2O at ;�26.58 S.
After a sharp decrease, the WUE is relatively
stable between�17.58 S and 608 N except extreme
large values are found between 8.58 N and 18.58

N. The particularly high WUE values (above 3 g
C/kg H2O) found at around�26.58 S and 16.58 N
are caused by the large values in parts of Africa,
Australia, and New Zealand (Fig. 2). The WUE
values around these two latitudes are with large

uncertainty due to sparse vegetation. Above 608

N, the WUE decreases sharply with latitude
(WUE ¼�0.075 [latitude] þ 6.153, R2¼ 0.98, p ,

0.001).
The morphological effects of vegetation on

WUE were assessed using the LAI. The global
average LAI varies from 0 to 8.7 m2/m2 at the
annual scale over the study period (Fig. 5). The
WUE first linearly increases sharply when the
LAI is smaller than 1.5 m2/m2 (WUE ¼ 0.172
[LAI] �0.281, R2 ¼ 0.98, p , 0.001) with a
maximum of 2.26 g C/kg H2O. After decreases
through 2.1 m2/m2, WUE starts to increase from
1.75 to 2.14 g C/kg H2O when LAI reaches 4.8
m2/m2 (WUE¼ 0.014 [LAI]þ 1.43, R2¼ 0.97, p ,

0.001). When LAI is above 4.8 m2/m2, WUE does
not fluctuate much.

Effects meteorological drivers on
spatial patterns of WUE

Two maxima of (2.72 and 2.64 g C/kg H2O) are
observed in extremely dry and wet areas with
large uncertainties. The WUE first increases as
precipitation increases when the latter is below
2353 mm/yr (WUE¼0.0001 [precipitation]þ1.61,

Fig. 3. Average WUE values for different biomes. The vegetation classification is based on the University of

Maryland (UMD) scheme. The abbreviations are defined as follows: ENF, evergreen needleleaf forest; EBF,

evergreen broadleaf forest; DNF, deciduous needleleaf forest; DBF, deciduous broadleaf forest; MF, mixed forest;

CSH, closed shrublands; OSH, open shrublands; WSA, woody savannas; SA, savannas; GRA, grasslands; CRO,

croplands. The band within a box shows the average WUE of each biome; the top and bottom of the box show the

standard deviation of WUE and the ends of the whiskers show the minimum and maximum. The outliers are

neglected in the figure. Each biome is significantly different from others (one-way ANOVA, a ¼ 0.05).
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R2 ¼ 0.50, p , 0.001); while it decreases when
precipitation is above this value until precipita-
tion is around 4450 mm/yr (WUE ¼ �0.0002
[precipitation] þ 2.31, R2 ¼ 0.40, p , 0.001) (Fig.
6a). WUE also shows large variations with
temperature changes (Fig. 6b). In regions where
the temperature is below 208C, WUE tends to
increase as the temperature increases by a linear
relationship (WUE ¼ 0.054 [temperature] þ 1.33,
R2¼ 0.85, p , 0.001) and reaches a maximum of
3.51 g C/kg H2O at ;18.58C. WUE then decreases
sharply until 25.78C (WUE ¼�0.0997 [tempera-
ture] þ 4.50, R2 ¼ 0.51, p , 0.001) and shows
extremes values with large uncertainty after-
wards.

The WUE increases as the solar radiation
increases in regions where solar radiation is less

than 242.2 W/m2 (WUE¼�0.009 [solar radiation]
þ 0.023, R2 ¼ 0.83, p , 0.001; Fig. 6c). The WUE
reaches a maximum of 2.65 g C/kg H2O at ;242.2
W/m2 and tends to decrease as solar radiation
increases (WUE ¼ �0.032 [solar radiation]
þ10.193, R2 ¼ 0.85, p , 0.001). Since the solar
radiation for most land areas (90%) is below
242.2 W/m2, this indicates a large solar radiation
would introduce a large WUE in most land areas.
WUE also changes with specific humidity (Fig.
6d). In relatively dry regions where specific
humidity is less than 0.0072 kg/kg, WUE is larger
when the specific humidity is large (WUE ¼
392.92 [specific humidity] �0.3, R2 ¼ 0.99, p ,

0.001). WUE reaches its maximum of 2.24 g C/kg
H2O around 0.0092 kg/kg and then becomes
stable when specific humidity is above 0.01 kg/
kg.

Trends in WUE
From 2000 to 2013, GPP, ET, and WUE show

relatively large variations at the global scale
(Table 1). The maximum GPP occurs in 2013,
with a value of 901.13 g C�m�2�yr�1. The
minimum GPP is observed in 2002, with a value
of 860.41 g C�m�2�yr�1. The maximum and
minimum ET values are observed in 2010 and
2002 as 530.2 and 511.66 mm/yr, respectively. The
maximum and minimum WUE values are
observed as 1.75 and 1.66 g C/kg H2O in 2013
and 2010, respectively. The GPP shows an
increasing trend over the 14-year period (R2 ¼

Fig. 4. Altitudinal and latitudinal WUE patterns.

Altitude is from DEM (m) values. Each point repre-

sents averaged WUE values for 100 m and 18 intervals

for altitude and latitude, respectively. Gray zones show

the standard deviation of each interval.

Fig. 5. Morphological WUE patterns as represented

by leaf area index (LAI). Each point represents

averaged WUE for 0.1 m2/m2 intervals of LAI. Gray

zones show the standard deviation of each interval.
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0.71, p , 0.01), but no significant trend is
observed for ET ( p ¼ 0.12). This results in an
increasing trend in WUE ( p ¼ 0.12). Therefore,
WUE is more influenced by GPP than by ET over
the study period.

Overall, WUE increases by 0.0025 g C�kg�1
H2O�yr�1 at the global scale (Fig. 7a). Areas with
a positive trend in WUE account for 58% of the
global land area. WUE increases rapidly in
almost the entire North America and a highly
significant increase is observed in Alaska (Fig.
7b). Positive trends are also found in the
Amazonian Plain, central Africa, India, and
eastern China. These areas show relatively large
WUE values and large positive trends. In
contrast, in Eastern Europe, northern Africa,
and southern South America, where large WUE
values are found (Fig. 2), large deceasing trends
are observed (Fig. 7b).

Significant increasing trends are observed for
evergreen needleleaf forest (R2 ¼ 0.34, p ¼ 0.02),
closed shrublands (R2 ¼ 0.49, p ¼ 0.01), open

shrublands (R2 ¼ 0.66, p , 0.001), and woody
savannas (R2¼ 0.30, p¼ 0.04; Fig. 8). In contrast,
no significant trends are observed for other
biomes. The four biomes with increasing trends

Fig. 6. WUE patterns with (a) precipitation (Pr, mm/yr), (b) temperature (Temp, 8C), (c) solar radiation (Sd, W/

m2), and (d) specific humidity (Shum, kg/kg). Each point represents averaged WUE for 100 mm/yr, 0.58C, 5 W/

m2, and 0.001 kg/kg intervals for precipitation, temperature, solar radiation, and specific humidity, respectively.

Gray zones show the standard deviation of each interval.

Table 1. Global average gross primary production

(GPP), evapotranspiration (ET), and WUE (¼GPP/

ET) from 2000 to 2013.

Year
GPP

(g C�m�2�yr�1)
ET

(mm/yr)
WUE

(g C/kg H2O)

2000 870.95 515.43 1.690
2001 872.13 512 1.703
2002 860.41 511.66 1.682
2003 874.79 516.41 1.694
2004 877.30 516.69 1.698
2005 866.99 514.08 1.686
2006 877.92 523.08 1.678
2007 882.57 528.68 1.669
2008 876.78 520.68 1.684
2009 878.67 521.85 1.684
2010 880.35 530.2 1.660
2011 898.19 522.91 1.718
2012 894.59 514.52 1.739
2013 901.13 515.43 1.748
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explain the positive trends in most of the land

surface areas (Fig. 7). Evergreen needleleaf forest,

shrublands, and woody savannas occupy nearly

50% (7.4%, 31.0%, and 8.4%, respectively) of the

total vegetated areas, and thus have essential

roles in global WUE trends.

Effects of meteorological drivers on
temporal trends in WUE

On average, precipitation increased by 6.44
mm yr/yr over the 14 years. In total, around 55%

of the land surface experienced a positive trend

(Appendix: Fig. A1). A positive linear relation-

Fig. 7. Spatial patterns of (a) WUE trends (g C�kg�1 H2O�yr�1) from 2000 to 2013 and (b) significance of the

trends. Highly significant (þ), significant (þ), non-significant, significant (�), and highly significant (�) show

positive trend with p , 0.05, positive trend with p , 0.1, non-significant trend, negative trend with p , 0.1, and

negative trend with p , 0.05 (t test).
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ship is found between WUE and precipitation for
44% of the land surface, with an average slope of
0.0002 g C�kg�1 H2O�mm�1�yr (Fig. 9a). The
positive relationship is found in areas with
relatively dense vegetation (e.g., forests) and
high precipitation; while the sparsely vegetated
areas such as Northern Africa and northern Asia
experience a negative relationship. Most of these
sparsely vegetated areas have relative low
precipitation (Appendix: Fig. A1). This indicates
that WUE increases as precipitation increases in

relatively wet areas and increases as precipitation
decreases in relatively dry areas.

Temperature increased over most parts of the
global land surface (around 64%) during the
study period with an average slope of 0.0238 C/yr
(Appendix: Fig. A2). Forty percent of the land
area shows a negative relationship between WUE
and temperature, with an average slope of�0.026
g C�kg�1 H2O�8C�1 (Fig. 9b). The negative
relationship is even more apparent for the
southern hemisphere (SH), with high signifi-

Fig. 8. Temporal trends in WUE for different biomes. The abbreviations for the different biomes are the same as

those in Fig. 3. R2 and p values are also shown.
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cance. In the northern hemisphere, India and
southern North America also show a negative
relationship between WUE and temperature.
However, for cold areas, such as the northern
high latitudes and the Tibetan Plateau, a positive
relationship is observed between WUE and
temperature.

Over the 14 years, the global land surface
experienced a dimming phase, with solar radia-
tion decreasing by 0.15 W�m�2�yr�1 on average.
Areas with decreasing trends occupy 57% of the
total land surface (Appendix: Fig. A3). These
areas are the same as those with increasing
trends in precipitation, such as the Amazonian
Plain, central and North Africa, and Southeast
Asia, with high significance. Overall, solar
radiation has a negative relationship with WUE
trend for the global dimming, with an average
slope of �0.005 g C�kg�1 H2O�m2�W�1 (Fig. 9c).
This indicates that for most areas (around 67%),
WUE increases as solar radiation decreases
(Appendix: Fig. A3).

Not surprisingly, the specific humidity shows
an increasing trend because of increasing precip-
itation at the global scale (0.00002 kg�kg�1�yr�1;

Appendix: Fig. A4). Areas with a positive trend
account for 69% of the total land surface and the
total area is a little larger than that for precipi-
tation (Appendix: Fig. A4). WUE shows a
positive relationship with specific humidity for
69% of the total land surface, and the average
slope is 17.36 g C�kg�1 H2O�kg�kg�1 (Fig. 9d). In
contrast, a significant negative relationship be-
tween WUE and specific humidity is observed in
Southeast Asia, northern and southern Africa,
and patchy areas in South America.

DISCUSSION

Global patterns and trends of WUE
WUE values generally show large spatial

variability at the global scale. Generally, biomes
with high productivity have large WUE values
(Fig. 2a). In areas with sparse vegetation, a large
WUE has also been observed but with large
interannual variation (Fig. 2b). This is obvious for
the WUE of CSH, which has a larger standard
deviation compared with other biomes (Fig. 3).
The negative relationship between WUE and
elevation may also be caused by frequent ice and

Fig. 9. Spatial patterns of regression slope between WUE and (a) precipitation, (b) temperature, (c) solar

radiation and (d) specific humidity from 2000 to 2013. The regression relationship between meteorological

variables and WUE is written as: [WUE] ¼ a 3 [meteorological variable] þ b, where a and b are regression

coefficients.
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snow cover and thus sparse vegetation associat-
ed with low temperature and precipitation in
high-elevation areas (Fig. 4). The latitudinal
WUE pattern clearly shows the influence of
interannual variability induced by the sparse
vegetation (Fig. 4).

The temporal trend over the 14 years studied
varies greatly in magnitude and also differs in
direction (increasing or decreasing). Few studies
have examined global WUE (Dan and Ji 2007,
Mu et al. 2011a, Ito and Inatomi 2012). Ito and
Inatomi (2012) calculated WUE as NPP/ET or
GPP/ET ratios using a global terrestrial model.
They found that for the period 1995–2004, the
global average WUE, calculated as GPP/ET, was
1.92 g C/kg H2O, which is slightly higher than
our value (1.70 g C/kg H2O). This might be
caused by the markedly larger WUE values for
croplands and savannas in their results, and the
different time period used. However, the spatial
patterns obtained by Ito and Inatomi (2012) and
by us are similar (Fig. 4 in Ito and Inatomi 2012).
We further compare the WUE in the year of 2010
from our study with global WUE (Xiao et al.,
unpublished manuscript) calculated using a data-
driven approach (Xiao et al. 2008) and WUE from
Jung et al. (2011; Fig. 10a). WUE from Jung et al.
(2011) is calculated as the ratio of GPP to ET and
is scaled up from flux tower values by a machine
learning technique for 2000–2011 at 0.58 3 0.58

grid resolution. We compare the biome-averaged
WUE from the two studies. All the biomes are
scattered around the 1:1 line except for closed
shrublands (CSH) for both cases. WUE for CSH
from our study (2.79 g C/kg H2O) is much larger
than those from Xiao et al. (unpublished manu-
script) and Jung et al. (2011; 1.31 and 1.21 g C/kg
H2O, respectively). Since CSH occupies 0.5% of
the global land area according to the MODIS
land cover with the UMD classification scheme,
we thus removed it from our figure. The
regression relationship is much improved when
CSH is removed (Fig. 10a). Note that WUE from
our study is comparable with Xiao et al.
(unpublished manuscript) for low productivity
biomes and is smaller for high productivity
biomes; while it is opposite when compared
with Jung et al. (2011). At the global scale, the
WUE patterns are similar among the three
studies (Appendix: Fig. A5). WUE from Xiao et
al. (unpublished manuscript) is largest for forests in

North America and Northern Asia (most above
2.5). Our estimates are between the estimates of
the two datasets for these areas. However, WUE
in Amazonia tropical forest from our results are
systematically smaller than those of the other two
studies (Appendix: Fig. A5). This might be
caused by the smaller GPP from this area as
MODIS GPP tends to be underestimated for the
high-productivity ecosystems (Turner et al.
2006). A large positive bias is also observed for
southern Arica and wet Australia, indicating
large uncertainties for these areas (Fig. 2b). These
results indicate necessity of validation of MODIS
products of GPP and ET in more areas besides
North America and Europe (Zhao et al. 2005, Mu
et al. 2007).

Overall, an increasing trend is found during
the research period on the global scale. These
results are consistent with those of Ito and
Inatomi (2012) and Dan and Ji (2007). Similarly,
Tian et al. (2010) investigated WUE values
(calculated as NPP/ET), using a process-based
model, for the southern USA during 1895–2007.
They found that WUE increased by 25% over the
period for their study area. In contrast, our
results show that several areas such as southern
South America, Eastern Europe, and southern
China show strong decreasing trends, which may
be caused by climatic variables (Fig. 9).

Since the time period of our analysis based on
the MODIS data is relatively short, we further
compare the MODIS-derived WUE with that
from the Integrated Biosphere Model (IBIS,
Kucharik et al. 2000) and that from Jung et al.
(2011; Fig. 10b). IBIS is run for the period 1948–
2010 to calculate the global GPP and ET at 0.58 3

0.58 latitude–longitude grid resolution. Temporal
trend of Jung et al. (2011) is for the period of
1982–2011 based on the available satellite data.
WUE from IBIS shows a significant increasing
trend for its analyzed period ( p , 0.001); while it
is not the case for Jung et al. (2011; p ¼ 0.19).
However, when evaluated for the period of
2000–2010 and 2000–2011 for IBIS and Jung et
al. (2011), both of the two studies show signifi-
cant increasing trends ( p¼0.009 and p¼0.045 for
IBIS and Jung et al. [2011], respectively). These
results indicate that MODIS products can detect
the disturbances and thus variations of WUE
over the global scale. On the other hand, the
absolute values of IBIS derived WUE are signif-
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icantly larger than those from Jung et al. (2011)
and MODIS products (one-way ANOVA, p ,

0.001). This necessitates further work on the
MODIS products validation or model calibration
for GPP or ET accuracy assessments.

Influences of meteorological and
morphological variables on WUE

The influences of meteorological and morpho-
logical variables on the patterns and trends of
WUE, and the responses of WUE to these
variables, may be different, or even opposite, at
different spatial (leaf, canopy, ecosystem, region-
al, or global) and temporal scales (half-hourly,
seasonal, and interannual; Scanlon and Albertson
2004, Krishnan et al. 2006, Hu et al. 2008, Yu et al.
2008, Tian et al. 2010, Yang et al. 2010, Mu et al.
2011a, Niu et al. 2011, Keenan et al. 2013). We
investigated the effects of four meteorological
variables (precipitation, temperature, solar radi-
ation, and specific humidity) and one morpho-
logical variable (LAI) on WUE. Global studies of

the effects of meteorological variables on WUE
are rare (Mu et al. 2011b, Ito and Inatomi 2012,
Keenan et al. 2013) and there is no consensus on
the subject. In a synthetic analysis, Keenan et al.
(2013) investigated the inherent WUE (WUEi,
WUE multiplied by VPD) using observed GPP
and ET data from forest sites in northeast US and
Western Europe. They observed an increase in
forest WUEi over a period from around the mid-
1990s to the present. Despite the slightly different
time period, this is consistent with our result for
the increasing trend in those areas (Fig. 7a).
Keenan et al. (2013) attributed the increases in the
WUEi for these forest sites to increasing atmo-
spheric CO2 concentrations, with a small fraction
explained by meteorological or morphological
variables. However, Figs. A1–A4 show that the
sites Keenan et al. (2013) selected are mainly
located within areas where meteorological vari-
ables are not changing significantly, i.e., in
regions in northeast US and Western Europe.

To further explore how meteorological vari-

Fig. 10. (a) Comparison of biome-averaged WUE in 2010 from Xiao et al. (unpublished manuscript; left panel)

and Jung et al. (2011; right panel) with that from our study; (b) comparison of time series of WUE from Jung et al.

(2011), our study (MODIS) and that from the Integrated Biosphere Model (IBIS, right bar). The time period for

Jung et al. (2011) and IBIS is 1982–2011 and 1948–2010, respectively. The abbreviations for the different biomes

are the same as those in Fig. 3.
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ables influence WUE, we assessed how WUE
responds to extreme weather events by taking
the European droughts during 2000–2010 as an
example. Three droughts occurred during this
period, i.e., in 2003, 2008 and 2010 (Ivits et al.
2014). We compared WUE in 2010 and that for
the averaged values during 2000–2013 (DWUE)
for the region. During the 2010 European
drought, 71% of the area shows a decreased
WUE (DWUE , 0; Fig. 11a). The averaged WUE
was observed to drop for all the three droughts
and was most obvious in 2010 (Fig. 11b). All of
the biomes show decreased WUE except for OSH
in Norway and grasslands of the Alps during this
drought (data not shown).

Few studies have examined the effects of LAI
on WUE (Hu et al. 2008, Keenan et al. 2013), since
most of the studies on WUE have focused on
short time periods (usually half an hour or
several weeks). However, over longer periods
(e.g., seasonal and interannual), LAI could be
important in WUE because it can substantially
influence WUE by affecting the ratio of transpi-
ration to ET (Hu et al. 2008). WUE increases
almost linearly as LAI increases for regions
where the LAI is smaller than 1.5 m2/m2, whereas
WUE does not fluctuate much for regions with
LAI larger than 2 m2/m2 (Fig. 5). The saturation
of WUE with LAI is in agreement with Beer et al.
(2009), who calculated WUEi using observed flux
datasets. The LAI affects WUE by regulating the
ratio of plant transpiration to ET (Hu et al. 2008,
Huang et al. 2010). It should be noted that the
positive relationship between WUE and LAI may
also be partly due to the inherent relationship
among the MODIS GPP, ET and LAI datasets,
which are derived from the same MODIS
reflectance data and ancillary land classification
data.

Uncertainty and limitations
Our WUE values are calculated from the

MODIS GPP and ET. The MODIS GPP and ET
products have significant uncertainty (Zhao et al.
2006, Mu et al. 2011b). MODIS GPP is calculated
using a simple multi-product formula (Eq. 1),
and the GPP estimates highly depend on the
input parameters, especially emax (maximum
light use efficiency). For example, emax is held
constant for each vegetation type in the MODIS
GPP algorithm although this parameter is in fact

highly variable (Turner et al. 2006). Other
uncertainties may arise from the meteorological
inputs from coarser resolutions (Global T62
Gaussian grid, ;1.888 3 1.888 for WGS-84
projection) compared with other MODIS prod-
ucts (Zhao et al. 2006). Similarly, uncertainties of
MODIS ET products may arise from the corre-
sponding meteorological inputs, the ET algo-
rithm and other MODIS inputs such as LAI and
land cover (Kim et al. 2012, Xue et al. 2013).
These uncertainties are indicated in our compar-
ison results (Fig. 1), which show a systematic
error of WUE with moderate R2 (0.55) at the site
level. Therefore, this necessitates validation of
MODIS products by more measured data and
improvement of the algorithm.

Our results show that future work should be
conducted to improve the accuracy of MODIS
GPP and ET particularly in sparsely vegetated
areas. The MODIS GPP and ET products have
several sources of uncertainty: model inputs,
model structure, and model parameters. For
example, the uncertainty in model inputs includ-
ing meteorological data and the land cover map
can lead to significant uncertainty in model
simulations (Zhao et al. 2006, Xiao et al. 2011).
The uncertainty in model parameters can also
lead to significant uncertainty in modeled fluxes
(Xiao et al. 2011, 2014). Moreover, the MODIS
algorithms for GPP and ET use a single set of
parameters to represent each biome and do not
consider the spatial heterogeneity within each
biome (Eq. 1). In reality, the different physiolog-
ical parameters may vary even within a given
vegetation type because of the variability in soil
types, climate and vegetation (Quesada et al.
2010), leading to biases in GPP and ET estimates
at the global scale (Castanho et al. 2013).
Parameter variability within a vegetation type
can lead to large variability in flux estimates
(Xiao et al. 2011).

Furthermore, because of the limited data
available from the MODIS products, we investi-
gated the temporal trends in WUE for only 14
years. An inter-comparison with WUE from
other sources (i.e., IBIS model results and Jung
et al. [2011]) show that the MODIS products can
detect the disturbances and general trends over
the global scale; whereas, absolute values of
WUE do not have a consensus among the three
datasets. Therefore, a longer time series of WUE
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values would be even more helpful for under-
standing vegetation adaption to climate change.

Finally, in this study, we focus on the influenc-
es of latitude, altitude, LAI, and four meteoro-
logical variables, but WUE could be influenced
by other factors such as nutrient cycling (e.g.,
Keenan et al. 2013), CO2 concentration (e.g.,
Saurer et al. 2004, Keenan et al. 2013), and land
use change (e.g., Tian et al. 2011), especially over
longer time periods. These factors should be
considered in future studies when longer time
series of WUE and spatially explicit information
on these variables become available.

CONCLUSIONS

WUE is an essential parameter that character-
izes the coupling of vegetation carbon and water
cycles. As a first thorough investigation, this
research maps the spatiotemporal patterns of
WUE on the global scale. WUE shows large

spatial variability globally and is influenced by
various meteorological and morphological vari-
ables. The WUE also shows a significant increas-
ing trend for most vegetated areas over the study
period. The meteorological variables play an
important role in temporal variations in WUE.
Despite the limitations of the MODIS products,
they are perhaps the best gridded data products
available for calculating WUE at the global scale.
Our results can improve our understanding of
the linkages between the global water and carbon
cycles by assessing the responses of WUE to
climate; and therefore have implications such as
future response projection and ecosystem man-
agement.
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