100 research outputs found

    Five-Year Clinical Outcomes After XIENCE PRIME Everolimus Elution Coronary Stent System (EECSS) Implantation

    Get PDF
    Background/aim: This study was aimed at evaluating 5-year effectiveness and safety in participants after XIENCE PRIME Everolimus Elution Coronary Stent System (EECSS) implantation. Materials and methods: From December 2013 to May 2014, 108 patients (127 lesions) were treated with the XIENCE PRIME EECSS. The entire follow-up included annual assessments for 5 years after treatment or until one of the clinical endpoints was reached. We evaluated the 5-year clinical outcomes with Kaplan-Meier analysis and the Cox regression model. Results: Nearly three-quarters of the participants were men (76.8%), and the average age was 65.6 ± 10.8 years. Bifurcation lesions accounted for 96.1% (122 lesions), and left main lesions accounted for 3.9% (five lesions), with a total count of 127 lesions. The cumulative rate of major adverse cardiac events was as follows: 1 year, 1.9%; 2 year, 4.0%; and 5 year, 10.0%. No definite or probable stent thrombosis was observed, and the rate of target lesion failure was only 3.3% over 5 years. The cumulative rate of major bleeding eventually increased to only 4.4%. Conclusions: The 5-year clinical outcomes were favorable in patients treated with XIENCE PRIME EECSS, and the incidence of stent thrombosis and target lesion failure was relatively low. The incidence of major bleeding gradually increased but remained moderate

    Quantum-enhanced Electrometer based on Microwave-dressed Rydberg Atoms

    Full text link
    Rydberg atoms have been shown remarkable performance in sensing microwave field. The sensitivity of such an electrometer based on optical readout of atomic ensemble has been demonstrated to approach the photon-shot-noise limit. However, the sensitivity can not be promoted infinitely by increasing the power of probe light due to the increased collision rates and power broadening. Compared with classical light, the use of quantum light may lead to a better sensitivity with lower number of photons. In this paper, we exploit entanglement in a microwave-dressed Rydberg electrometer to suppress the fluctuation of noise. The results show a sensitivity enhancement beating the shot noise limit in both cold and hot atom schemes. Through optimizing the transmission of optical readout, our quantum advantage can be maintained with different absorptive index of atomic vapor, which makes it possible to apply quantum light source in the absorptive electrometer

    Alteration of plasma metabolic profile and physical performance combined with metabolites is more sensitive to early screening for mild cognitive impairment

    Get PDF
    ObjectiveUnbiased metabolic profiling has been initiated to identify novel metabolites. However, it remains a challenge to define reliable biomarkers for rapid and accurate diagnosis of mild cognitive impairment (MCI). Our study aimed to evaluate the association of serum metabolites with MCI, attempting to find new biomarkers and combination models that are distinct for MCI.MethodsA total of 380 participants were recruited (mean age: 72.5 ± 5.19 years). We performed an untargeted metabolomics analysis on older adults who underwent the Mini-Mental State Examination (MMSE), the Instrumental Activities of Daily Living (IADL), and physical performance tests such as hand grip, Timed Up and Go Test (TUGT), and walking speed. Orthogonal partial least squares discriminant analysis (OPLS-DA) and heat map were utilized to distinguish the metabolites that differ between groups.ResultsAmong all the subjects, 47 subjects were diagnosed with MCI, and methods based on the propensity score are used to match the MCI group with the normal control (NC) group (n = 47). The final analytic sample comprised 94 participants (mean age: 75.2 years). The data process from the metabolic profiles identified 1,008 metabolites. A cluster and pathway enrichment analysis showed that sphingolipid metabolism is involved in the development of MCI. Combination of metabolite panel and physical performance were significantly increased discriminating abilities on MCI than a single physical performance test [model 1: the area under the curve (AUC) = 0.863; model 2: AUC = 0.886; and model 3: AUC = 0.870, P < 0.001].ConclusionIn our study, untargeted metabolomics was used to detect the disturbance of metabolism that occurs in MCI. Physical performance tests combined with phosphatidylcholines (PCs) showed good utility in discriminating between NC and MCI, which is meaningful for the early diagnosis of MCI

    The Ventral Intermediate Nucleus Differently Modulates Subtype-Related Networks in Parkinson’s Disease

    Get PDF
    Background: Posture instability gait difficulty-dominant (PIGD) and tremor-dominant (TD) are two subtypes of Parkinson’s disease (PD). The thalamus is involved in the neural circuits of both subtypes. However, which subregion of the thalamus has an influence on the PD subtypes remains unclear.Objective: To explore the core subregion of the thalamus showing a significant influence on the PD subtypes and its directional interaction between the PD subtypes.Methods: A total of 79 PD patients (43 TD and 36 PIGD) and 31 normal controls (NC) were enrolled, and the gray matter volume and perfusion characteristics in the thalamus were compared between the three groups. The subregion of the thalamus with significantly different perfusion and volume among three groups was used as the seed of a Granger causality analysis (GCA) to compare the causal connectivity between different subtypes.Results: Perfusion with an increased gradient among the three groups (TD > PIGD > NC) in the bilateral ventral intermediate nucleus (Vim) was observed, which was positively correlated with the clinical tremor scores. The GCA revealed that TD patients had enhanced causal connectivity from the bilateral Vim to the bilateral paracentral gyrus, M1 and the cerebellum compared with the NC group, while the PIGD subtype revealed an increased causal connectivity from the bilateral Vim to the bilateral premotor cortex (preM) and putamen. Additionally, there were positive correlations between the tremor scores and a causal connectivity from the Vim to the cerebellum. The connectivity from the right Vim to the right preM and the right putamen was positively correlated with the PIGD scores.Conclusion: This multilevel analysis showed that the Vim had a significant influence on the PD subtypes and that it differentially mediated the TD and PIGD-related causal connectivity pattern in PD

    Simple sequence repeat-based consensus linkage map of \u3cem\u3eBombyx mori\u3c/em\u3e

    Get PDF
    We established a genetic linkage map employing 518 simple sequence repeat (SSR, or microsatellite) markers for Bombyx mori (silkworm), the economically and culturally important lepidopteran insect, as part of an international genomics program. A survey of six representative silkworm strains using 2,500 (CA)n- and (CT)n-based SSR markers revealed 17-24% polymorphism, indicating a high degree of homozygosity resulting from a long history of inbreeding. Twenty-nine SSR linkage groups were established in well characterized Dazao and C108 strains based on genotyping of 189 backcross progeny derived from an F1 male mated with a C108 female. The clustering was further focused to 28 groups by genotyping 22 backcross progeny derived from an F1 female mated with a C108 male. This set of SSR linkage groups was further assigned to the 28 chromosomes (established linkage groups) of silkworm aided by visible mutations and cleaved amplified polymorphic sequence markers developed from previously mapped genes, cDNA sequences, and cloned random amplified polymorphic DNAs. By integrating a visible mutation p (plain, larval marking) and 29 well conserved genes of insects onto this SSR-based linkage map, a second generation consensus silkworm genetic map with a range of 7-40 markers per linkage group and a total map length of ≈3431.9 cM was constructed and its high efficiency for genotyping and potential application for synteny studies of Lepidoptera and other insects was demonstrated

    Microstructural alterations of the hypothalamus in Parkinson's disease and probable REM sleep behavior disorder

    Get PDF
    Whether there is hypothalamic degeneration in Parkinson's disease (PD) and its association with clinical symptoms and pathophysiological changes remains controversial. We aimed to quantify microstructural changes in hypothalamus using a novel deep learning-based tool in patients with PD and those with probable rapid-eye-movement sleep behavior disorder (pRBD). We further assessed whether these microstructural changes associated with clinical symptoms and free thyroxine (FT4) levels. This study included 186 PD, 67 pRBD, and 179 healthy controls. Multi-shell diffusion MRI were scanned and mean kurtosis (MK) in hypothalamic subunits were calculated. Participants were assessed using Unified Parkinson's Disease Rating Scale (UPDRS), RBD Questionnaire-Hong Kong (RBDQ-HK), Hamilton Depression Rating Scale (HAMD), and Activity of Daily Living (ADL) Scale. Additionally, a subgroup of PD (n = 31) underwent assessment of FT4. PD showed significant decreases of MK in anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tubular (supTub), and inferior tubular hypothalamus when compared with healthy controls. Similarly, pRBD exhibited decreases of MK in a-iHyp and supTub. In PD group, MK in above four subunits were significantly correlated with UPDRS-I, HAMD, and ADL. Moreover, MK in a-iHyp and a-sHyp were significantly correlated with FT4 level. In pRBD group, correlations were observed between MK in a-iHyp and UPDRS-I. Our study reveals that microstructural changes in the hypothalamus are already significant at the early neurodegenerative stage. These changes are associated with emotional alterations, daily activity levels, and thyroid hormone levels. [Abstract copyright: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

    Dopamine depletion and subcortical dysfunction disrupt cortical synchronization and metastability affecting cognitive function in Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is primarily characterized by the loss of dopaminergic cells and atrophy in subcortical regions. However, the impact of these pathological changes on large‐scale dynamic integration and segregation of the cortex are not well understood. In this study, we investigated the effect of subcortical dysfunction on cortical dynamics and cognition in PD. Spatiotemporal dynamics of the phase interactions of resting‐state blood‐oxygen‐level‐dependent signals in 159 PD patients and 152 normal control (NC) individuals were estimated. The relationships between subcortical atrophy, subcortical–cortical fiber connectivity impairment, cortical synchronization/metastability, and cognitive performance were then assessed. We found that cortical synchronization and metastability in PD patients were significantly decreased. To examine whether this is an effect of dopamine depletion, we investigated 45 PD patients both ON and OFF dopamine replacement therapy, and found that cortical synchronization and metastability are significantly increased in the ON state. The extent of cortical synchronization and metastability in the OFF state reflected cognitive performance and mediates the difference in cognitive performance between the PD and NC groups. Furthermore, both the thalamic volume and thalamocortical fiber connectivity had positive relationships with cortical synchronization and metastability in the dopaminergic OFF state, and mediate the difference in cortical synchronization between the PD and NC groups. In addition, thalamic volume also reflected cognitive performance, and cortical synchronization/metastability mediated the relationship between thalamic volume and cognitive performance in PD patients. Together, these results highlight that subcortical dysfunction and reduced dopamine levels are responsible for decreased cortical synchronization and metastability, further affecting cognitive performance in PD. This might lead to biomarkers being identified that can predict if a patient is at risk of developing dementia
    • 

    corecore