64 research outputs found
Trace Ratio Criterion-Based Kernel Discriminant Analysis for Fault Diagnosis of Rolling Element Bearings Using Binary Immune Genetic Algorithm
The rolling element bearing is a core component of many systems such as aircraft, train, steamboat, and machine tool, and their failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Due to misoperation, manufacturing deficiencies, or the lack of monitoring and maintenance, it is often found to be the most unreliable component within these systems. Therefore, effective and efficient fault diagnosis of rolling element bearings has an important role in ensuring the continued safe and reliable operation of their host systems. This study presents a trace ratio criterion-based kernel discriminant analysis (TR-KDA) for fault diagnosis of rolling element bearings. The binary immune genetic algorithm (BIGA) is employed to solve the trace ratio problem in TR-KDA. The numerical results obtained using extensive simulation indicate that the proposed TR-KDA using BIGA (called TR-KDA-BIGA) can effectively and efficiently classify different classes of rolling element bearing data, while also providing the capability of real-time visualization that is very useful for the practitioners to monitor the health status of rolling element bearings. Empirical comparisons show that the proposed TR-KDA-BIGA performs better than existing methods in classifying different classes of rolling element bearing data. The proposed TR-KDA-BIGA may be a promising tool for fault diagnosis of rolling element bearings
A novel variant of COL6A3 c.6817-2(IVS27)A>G causing Bethlem myopathy: A case report
Bethlem myopathy (BM) is a disease that is caused by mutations in the collagen VI genes. It is a mildly progressive disease characterized by proximal muscle weakness and contracture of the fingers, the wrist, the elbow, and the ankle. BM is an autosomal dominant inheritance that is mainly caused by dominant COL6A1, COL6A2, or COL6A3 mutations. However, a few cases of collagen VI mutations with bilateral facial weakness and Beevor's sign have also been reported. This study presents a 50-year-old female patient with symptoms of facial weakness beginning in childhood and with the slow progression of the disease with age. At the age of 30 years, the patient presented with asymmetrical proximal muscle weakness, and the neurological examination revealed bilateral facial weakness and a positive Beevor's sign. Phosphocreatine kinase was slightly elevated with electromyography showing myopathic changes and magnetic resonance imaging (MRI) of the lower limb muscles showing the muscle MRI associated with collagen VI (COL6)-related myopathy (COL6-RM). The whole-genome sequencing technology identified the heterozygous mutation c.6817-2(IVS27)A>G in the COL6A3 gene, which was in itself a novel mutation. The present study reports yet another case of BM, which is caused by the recessive COL6A3 intron variation, widening the clinical spectrum and genetic heterogeneity of BM
Quantitative risk assessment of continuous liquid spill fires based on spread and burning behaviours
Modulation of Bax and mTOR for Cancer Therapeutics.
A rationale exists for pharmacologic manipulation of the serine (S)184 phosphorylation site of the proapoptotic Bcl2 family member Bax as an anticancer strategy. Here, we report the refinement of the Bax agonist SMBA1 to generate CYD-2-11, which has characteristics of a suitable clinical lead compound. CYD-2-11 targeted the structural pocket proximal to S184 in the C-terminal region of Bax, directly activating its proapoptotic activity by inducing a conformational change enabling formation of Bax homooligomers in mitochondrial membranes. In murine models of small-cell and non-small cell lung cancers, including patient-derived xenograft and the genetically engineered mutant KRAS-driven lung cancer models, CYD-2-11 suppressed malignant growth without evident significant toxicity to normal tissues. In lung cancer patients treated with mTOR inhibitor RAD001, we observed enhanced S184 Bax phosphorylation in lung cancer cells and tissues that inactivates the propaoptotic function of Bax, contributing to rapalog resistance. Combined treatment of CYD-2-11 and RAD001 in murine lung cancer models displayed strong synergistic activity and overcame rapalog resistanc
Anti-HIV-1 Activity of a New Scorpion Venom Peptide Derivative Kn2-7
For over 30 years, HIV/AIDS has wreaked havoc in the world. In the absence of an effective vaccine for HIV, development of new anti-HIV agents is urgently needed. We previously identified the antiviral activities of the scorpion-venom-peptide-derived mucroporin-M1 for three RNA viruses (measles viruses, SARS-CoV, and H5N1). In this investigation, a panel of scorpion venom peptides and their derivatives were designed and chosen for assessment of their anti-HIV activities. A new scorpion venom peptide derivative Kn2-7 was identified as the most potent anti-HIV-1 peptide by screening assays with an EC50 value of 2.76 µg/ml (1.65 µM) and showed low cytotoxicity to host cells with a selective index (SI) of 13.93. Kn2-7 could inhibit all members of a standard reference panel of HIV-1 subtype B pseudotyped virus (PV) with CCR5-tropic and CXCR4-tropic NL4-3 PV strain. Furthermore, it also inhibited a CXCR4-tropic replication-competent strain of HIV-1 subtype B virus. Binding assay of Kn2-7 to HIV-1 PV by Octet Red system suggested the anti-HIV-1 activity was correlated with a direct interaction between Kn2-7 and HIV-1 envelope. These results demonstrated that peptide Kn2-7 could inhibit HIV-1 by direct interaction with viral particle and may become a promising candidate compound for further development of microbicide against HIV-1
SMARANDACHE CONCATENATED POWER DECIMALS AND THEIR IRRATIONALITY
In this paper we prove that all Smarandache concatenated k-power decimals are irrational numbers
A Novel Software and Method for the Efficient Development of Polymorphic SSR Loci Based on Transcriptome Data
Traditional methods for developing polymorphic microsatellite loci without reference sequences are time-consuming and labor-intensive, and the polymorphisms of simple sequence repeat (SSR) loci developed from expressed sequence tag (EST) databases are generally poor. To address this issue, in this study, we developed a new software (PSSRdt) and established an effective method for directly obtaining polymorphism details of SSR loci by analyzing diverse transcriptome data. The new method includes three steps, raw data processing, PSSRdt application, and loci extraction and verification. To test the practicality of the method, we successfully obtained 1940 potential polymorphic SSRs from the transcript dataset combined with 44 pea aphid transcriptomes. Fifty-two SSR loci obtained by the new method were selected for validating the polymorphic characteristics by genotyping in pea aphid individuals. The results showed that over 92% of SSR loci were polymorphic and 73.1% of loci were highly polymorphic. Our new software and method provide an innovative approach to microsatellite development based on RNA-seq data, and open a new path for the rapid mining of numerous loci with polymorphism to add to the body of research on microsatellites
- …