49 research outputs found

    Schistosome Eggs Impair Protective Th1/Th17 Immune Responses Against Salmonella Infection

    Get PDF
    Countries with a high incidence of helminth infections are characterized by high morbidity and mortality to infections with intracellular pathogens such as Salmonella. Some patients with Salmonella-Schistosoma co-infections develop a so-called “chronic septicemic salmonellosis,” with prolonged fever and enlargement of the liver and spleen. These effects are most likely due to the overall immunoregulatory activities of schistosomes such as induction of Tregs, Bregs, alternatively activated macrophages, and degradation of antibodies. However, detailed underlying mechanisms are not very well investigated. Here, we show that intraperitoneal application of live Schistosoma mansoni eggs prior to infection with Salmonella Typhimurium in mice leads to an impairment of IFN-γ and IL-17 responses together with a higher bacterial load compared to Salmonella infection alone. S. mansoni eggs were found in granulomas in the visceral peritoneum attached to the colon. Immunohistological staining revealed IPSE/alpha-1, a glycoprotein secreted from live schistosome eggs, and recruited basophils around the eggs. Noteworthy, IPSE/alpha-1 is known to trigger IL-4 and IL-13 release from basophils which in turn is known to suppress Th1/Th17 responses. Therefore, our data support a mechanism of how schistosomes impair a protective immune response against Salmonella infection and increase our understanding of helminth-bacterial co-infections

    Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ

    No full text
    Human infections by the bacterial pathogen Salmonella enterica represent major disease burdens worldwide. This highly ubiquitous species consists of more than 2600 different serovars that can be divided into typhoidal and non-typhoidal Salmonella (NTS) serovars. Despite their genetic similarity, these two groups elicit very different diseases and distinct immune responses in humans. Comparative analyses of the genomes of multiple Salmonella serovars have begun to explain the basis of the variation in disease manifestations. Recent advances in modeling both enteric fever and intestinal gastroenteritis in mice will facilitate investigation into both the bacterial- and host-mediated mechanisms involved in salmonelloses. Understanding the genetic and molecular mechanisms responsible for differences in disease outcome will augment our understanding of Salmonella pathogenesis, host immunity, and the molecular basis of host specificity. This review outlines the differences in epidemiology, clinical manifestations, and the human immune response to typhoidal and NTS infections and summarizes the current thinking on why these differences might exist

    Salmonella: from Pathogenesis to Therapeutics

    No full text

    Differences in Host Cell Invasion and Salmonella Pathogenicity Island 1 Expression between Salmonella enterica Serovar Paratyphi A and Nontyphoidal S. Typhimurium

    No full text
    Active invasion into nonphagocytic host cells is central to Salmonella enterica pathogenicity and dependent on multiple genes within Salmonella pathogenicity island 1 (SPI-1). Here, we explored the invasion phenotype and the expression of SPI-1 in the typhoidal serovarS Paratyphi A compared to that of the nontyphoidal serovarS Typhimurium. We demonstrate that while S. Typhimurium is equally invasive under both aerobic and microaerobic conditions, S. Paratyphi A invades only following growth under microaerobic conditions. Transcriptome sequencing (RNA-Seq), reverse transcription-PCR (RT-PCR), Western blot, and secretome analyses established that S. Paratyphi A expresses much lower levels of SPI-1 genes and secretes lesser amounts of SPI-1 effector proteins than S. Typhimurium, especially under aerobic growth. Bypassing the native SPI-1 regulation by inducible expression of the SPI-1 activator, HilA, considerably elevated SPI-1 gene expression, host cell invasion, disruption of epithelial integrity, and induction of proinflammatory cytokine secretion by S. Paratyphi A but not by S. Typhimurium, suggesting that SPI-1 expression is naturally downregulated inS Paratyphi A. Using streptomycin-treated mice, we were able to establish substantial intestinal colonization byS Paratyphi A and showed moderately higher pathology and intestinal inflammation in mice infected with S. Paratyphi A overexpressing hilA Collectively, our results reveal unexpected differences in SPI-1 expression between S. Paratyphi A andS Typhimurium, indicate that S. Paratyphi A host cell invasion is suppressed under aerobic conditions, and suggest that lower invasion in aerobic sites and suppressed expression of immunogenic SPI-1 components contributes to the restrained inflammatory infection elicited by S. Paratyphi A

    Differences in Host Cell Invasion and Salmonella Pathogenicity Island 1 Expression between Salmonella enterica Serovar Paratyphi A and Nontyphoidal S

    No full text
    Active invasion into nonphagocytic host cells is central to Salmonella enterica pathogenicity and dependent on multiple genes within Salmonella pathogenicity island 1 (SPI-1). Here, we explored the invasion phenotype and the expression of SPI-1 in the typhoidal serovar S. Paratyphi A compared to that of the nontyphoidal serovar S. Typhimurium. We demonstrate that while S. Typhimurium is equally invasive under both aerobic and microaerobic conditions, S. Paratyphi A invades only following growth under microaerobic conditions. Transcriptome sequencing (RNA-Seq), reverse transcription-PCR (RT-PCR), Western blot, and secretome analyses established that S. Paratyphi A expresses much lower levels of SPI-1 genes and secretes lesser amounts of SPI-1 effector proteins than S. Typhimurium, especially under aerobic growth. Bypassing the native SPI-1 regulation by inducible expression of the SPI-1 activator, HilA, considerably elevated SPI-1 gene expression, host cell invasion, disruption of epithelial integrity, and induction of proinflammatory cytokine secretion by S. Paratyphi A but not by S. Typhimurium, suggesting that SPI-1 expression is naturally downregulated in S. Paratyphi A. Using streptomycin-treated mice, we were able to establish substantial intestinal colonization by S. Paratyphi A and showed moderately higher pathology and intestinal inflammation in mice infected with S. Paratyphi A overexpressing hilA. Collectively, our results reveal unexpected differences in SPI-1 expression between S. Paratyphi A and S. Typhimurium, indicate that S. Paratyphi A host cell invasion is suppressed under aerobic conditions, and suggest that lower invasion in aerobic sites and suppressed expression of immunogenic SPI-1 components contributes to the restrained inflammatory infection elicited by S. Paratyphi A

    Infection of Human Oral Epithelia with Candida Species Induces Cytokine Expression Correlated to the Degree of Virulence

    Get PDF
    A defined and balanced immunomodulatory response is crucial for the protection of mucosal surfaces being in contact with pathogenic microorganisms. This study examined the local host response mechanisms of epithelial cells in experimental Candida albicans, C. tropicalis, and C. glabrata infections by measuring the expression of cytokines at the mRNA and protein level. During the course of infection with active but not with heat-killed C. albicans stimulation of the gene expression levels for interleukin-1α, interleukin-1β, tumor necrosis factor, Exodus-2, P-selectin ligand, granulocyte-monocyte colony-stimulating factor, and interleukin-8 was observed by standard and quantitative reverse transcription–polymerase chain reaction. This cytokine pattern may favor a chemotactic and a T helper 1 response. Initial moderate or weak upregulation of these cytokine genes by reverse transcription–polymerase chain reaction was also observed in epithelial infection with the less virulent species C. tropicalis and C. glabrata. Heat-killed C. albicans failed to induce an epithelial immune response. At the protein level, expression of interleukin-8 protein was strongly enhanced during the course of C. albicans infection, whereas lower levels were seen with C. tropicalis and C. glabrata. The different expression patterns of cytokines were associated with differences in virulence of the Candida strains. This study's data, therefore, show a correlation between the virulence potential of pathogenic fungi, possibly mediated by specific virulence factors (such as proteinases), and the secretion of epithelial cytokines and chemokines, which may initiate in vivo a protective T helper 1 immunologic response and contribute to the recruitment of activated leukocytes and lymphocytes to the site of mucosal infection

    Multigenerational Influences of the Fut2 Gene on the Dynamics of the Gut Microbiota in Mice

    No full text
    The FUT2 gene encodes an α-1,2-fucosyltransferase responsible for the expression of ABO histo-blood-group antigens on mucosal surfaces and bodily secretions. Individuals who carry at least one functional allele are known as "secretors," whereas those homozygous for loss-of-function mutations are known as "non-secretors." Non-secretor individuals are more susceptible to chronic inflammatory disorders such as Crohn's Disease, which may be mediated by alterations in the microbiota. Here, we investigated the dynamics of microbial community assembly with respect to genotype using a Fut2-deficient mouse model, taking the genotype of the maternal lineage over two generations into account. We found strong differences in community assembly of microbial communities over time, depending on the Fut2 genotype of the host and that of their progenitors. By applying network analyses, we further identified patterns of specialization and stabilization over time, which are influenced by the host and parental genotype during the process of community development. We also show genotype- and breeding-dependent patterns of community susceptibility to disturbance in a novel in silico approach integrating ecological- and network analysis. Our results indicate that it may be important to investigate the influence of Fut2 genotype in a familial context in order to fully understand its role in the etiology of chronic inflammatory disorders. © 2017 Rausch, Künzel, Suwandi, Grassl, Rosenstiel and Baines
    corecore