28 research outputs found

    Temperature sensitivity of organic-matter decay in tidal marshes

    Get PDF
    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per degrees C, Q(10) = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise

    Spatio-temporal development of vegetation die-off in a submerging coastal marsh

    Get PDF
    In several places around the world, coastal marsh vegetation is converting to open water through the formation of pools. This is concerning, as vegetation die-off is expected to reduce the marshes\u27 capacity to adapt to sea level rise by vegetation-induced sediment accretion. Quantitative analyses of the spatial and temporal development of marsh vegetation die-off are scarce, although these are needed to understand the bio-geomorphic feedback effects of vegetation die-off on flow, erosion, and sedimentation. In this study, we quantified the spatial and temporal development of marsh vegetation die-off with aerial images from 1938 to 2010 in a submerging coastal marsh along the Blackwater River (Maryland, U.S.A). Our results indicate that die-off begins with conversion of marsh vegetation into bare open water pools that are relatively far (\u3e 75 m) from tidal channels. As vegetation die-off continues, pools expand, and new pools emerge at shorter and shorter distances from channels. Consequently larger pools are found at larger distances from the channels. Our results suggest that the size of the pools and possibly the connection of pools with the tidal channel system have important bio-geomorphic implications and aggravate marsh deterioration. Moreover, we found that the temporal development of vegetation die-off in moderately degraded marshes is similar as the spatial die-off development along a present-day gradient, which indicates that the contemporary die-off gradient might be considered a chronosequence that offers a unique opportunity to study vegetation die-off processes

    Vulnerability of Northern Prairie Wetlands to Climate Change

    Get PDF
    The prairie pothole region (PPR) lies in the heart of North America and contains millions of glacially formed, depressional wetlands embedded in a landscape matrix of natural grassland and agriculture. These wetlands provide valuable ecosystem services and produce 50% to 80% of the continent\u27s ducks. We explored the broad spatial and temporal patterns across the PPR between climate and wetland water levels and vegetation by applying a wetland simulation model (WETSIM) to 18 stations with 95-year weather records. Simulations suggest that the most productive habitat for breeding waterfowl would shift under a drier climate from the center of the PPR (the Dakotas and southeastern Saskatchewan) to the wetter eastern and northern fringes, areas currently less productive or where most wetlands have been drained. Unless these wetlands are protected and restored, there is little insurance for waterfowl against future climate warming. WETSIM can assist wetland managers in allocating restoration dollars in an uncertain climate future

    Reconciling models and measurements of marsh vulnerability to sea level rise

    Get PDF
    Tidal marsh survival in the face of sea level rise (SLR) and declining sediment supply often depends on the ability of marshes to build soil vertically. However, numerical models typically predict survival under rates of SLR that far exceed field-based measurements of vertical accretion. Here, we combine novel measurements from seven U.S. Atlantic Coast marshes and data from 70 additional marshes from around the world to illustrate that—over continental scales—70% of variability in marsh accretion rates can be explained by suspended sediment concentratin (SSC) and spring tidal range (TR). Apparent discrepancies between models and measurements can be explained by differing responses in high marshes and low marshes, the latter of which accretes faster for a given SSC and TR. Together these results help bridge the gap between models and measurements, and reinforce the paradigm that sediment supply is the key determinant of wetland vulnerability at continental scales

    Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C

    Get PDF
    Several coastal ecosystems—most notably mangroves and tidal marshes—exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment. The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs. The persistence of these ecosystems under high rates of RSLR is contested. Here we show that the probability of vertical adjustment to RSLR inferred from palaeo-stratigraphic observations aligns with contemporary in situ survey measurements. A defcit between tidal marsh and mangrove adjustment and RSLR is likely at 4 mm yr−1 and highly likely at 7 mm yr−1 of RSLR. As rates of RSLR exceed 7 mm yr−1, the probability that reef islands destabilize through increased shoreline erosion and wave over-topping increases. Increased global warming from 1.5 °C to 2.0 °C would double the area of mapped tidal marsh exposed to 4 mm yr−1 of RSLR by between 2080 and 2100. With 3 °C of warming, nearly all the world’s mangrove forests and coral reef islands and almost 40% of mapped tidal marshes are estimated to be exposed to RSLR of at least 7 mm yr−1. Meeting the Paris agreement targets would minimize disruption to coastal ecosystems

    The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    No full text
    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise
    corecore