199 research outputs found

    Protecting Tree Roots at the Morris Arboretum

    Get PDF

    Lattice Boltzmann Models for Complex Fluids

    Full text link
    We present various Lattice Boltzmann Models which reproduce the effects of rough walls, shear thinning and granular flow. We examine the boundary layers generated by the roughness of the walls. Shear thinning produces plug flow with a sharp density contrast at the boundaries. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.Comment: 11 pages, plain TeX, preprint HLRZ 23/9

    A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    Get PDF
    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the thicknesses of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee [J. Comput. Phys. 86, 187] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin [J. Comput. Phys. 163, 216] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving and the statistical average of this method is shown to significantly delay the onset of pinning

    Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media

    Full text link
    We report the results of a study of multiphase flow in porous media. A Darcy's law for steady multiphase flow was investigated for both binary and ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager reciprocity were shown to be a good approximation of the simulation data. The dependence of the relative permeability coefficients on water saturation was investigated and showed good qualitative agreement with experimental data. Non-steady state invasion flows were investigated, with particular interest in the asymptotic residual oil saturation. The addition of surfactant to the invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.

    Lattice Boltzmann Thermohydrodynamics

    Full text link
    We introduce a lattice Boltzmann computational scheme capable of modeling thermohydrodynamic flows of monatomic gases. The parallel nature of this approach provides a numerically efficient alternative to traditional methods of computational fluid dynamics. The scheme uses a small number of discrete velocity states and a linear, single-time-relaxation collision operator. Numerical simulations in two dimensions agree well with exact solutions for adiabatic sound propagation and Couette flow with heat transfer.Comment: 11 pages, Physical Review E: Rapid Communications, in pres

    Domain Growth, Wetting and Scaling in Porous Media

    Full text link
    The lattice Boltzmann (LB) method is used to study the kinetics of domain growth of a binary fluid in a number of geometries modeling porous media. Unlike the traditional methods which solve the Cahn-Hilliard equation, the LB method correctly simulates fluid properties, phase segregation, interface dynamics and wetting. Our results, based on lattice sizes of up to 4096×40964096\times 4096, do not show evidence to indicate the breakdown of late stage dynamical scaling, and suggest that confinement of the fluid is the key to the slow kinetics observed. Randomness of the pore structure appears unnecessary.Comment: 13 pages, latex, submitted to PR

    Diffusion in a multi-component Lattice Boltzmann Equation model

    Full text link
    Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE) model are discussed in detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients are obtained analytically. The analytical results are further confirmed by numerical simulations in a few solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR

    Multi-component lattice-Boltzmann model with interparticle interaction

    Full text link
    A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\bf 47}, 1815, (1993)] lattice Boltzmann model for simulating fluids with multiple components and interparticle forces is described in detail. Macroscopic equations governing the motion of each component are derived by using Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirmed by numerical simulation. The diffusivity is generally a function of the concentrations of the two components but independent of the fluid velocity so that the diffusion is Galilean invariant. The analytically calculated shear kinematic viscosity of this model is also confirmed numerically.Comment: 18 pages, compressed and uuencoded postscript fil

    Lattice Boltzmann Simulation of Non-Ideal Fluids

    Full text link
    A lattice Boltzmann scheme able to model the hydrodynamics of phase separation and two-phase flow is described. Thermodynamic consistency is ensured by introducing a non-ideal pressure tensor directly into the collision operator. We also show how an external chemical potential can be used to supplement standard boundary conditions in order to investigate the effect of wetting on phase separation and fluid flow in confined geometries. The approach has the additional advantage of reducing many of the unphysical discretisation problems common to previous lattice Boltzmann methods.Comment: 11 pages, revtex, 4 Postscript figures, uuencode

    Scale invariance in coarsening of binary and ternary fluids

    Full text link
    Phase separation in binary and ternary fluids is studied using a two dimensional Lattice Gas Automata. The lengths, given by the the first zero crossing point of the correlation function and the total interface length is shown to exhibit power law dependence on time. In binary mixtures, our data clearly indicate the existence of a regime having more than one length scale where the coarsening process proceeds through the rupture and reassociation of domains. In ternary fluids; in the case of symmetric mixtures there exists a regime with a single length scale having dynamic exponent 1/2, while in asymmetric mixtures our data establish the break down of scale invariance.Comment: 20 pages, 13 figure
    corecore