5 research outputs found

    Transient magnetotransport through a quantum wire

    Full text link
    We consider an ideal parabolic quantum wire in a perpendicular magnetic field. A simple Gaussian shaped scattering potential well or hill is flashed softly on and off with its maximum at t=0t=0, mimicking a temporary broadening or narrowing of the wire. By an extension of the Lippmann-Schwinger formalism to time-dependent scattering potentials we investigate the effects on the continuous current that is driven through the quantum wire with a vanishingly small forward bias. The Lippmann-Schwinger approach to the scattering process enables us to investigate the interplay between geometrical effects and effects caused by the magnetic field.Comment: RevTeX (pdf-LaTeX), 11 pages with 15 included jpg figure

    Time-dependent magnetotransport of a wave packet in a quantum wire with embedded quantum dots

    Full text link
    We consider wave packet propagation in a quantum wire with either an embedded antidot or an embedded parallel double open quantum dot under the influence of a uniform magnetic field. The magnetoconductance and the time evolution of an electron wave packet are calculated based on the Lippmann-Schwinger formalism. This approach allows us to look at arbitrary embedded potential profiles and illustrate the results by performing computational simulations for the conductance and the time evolution of the electron wave packet through the quantum wire. In the double-dot system we observe a long-lived resonance state that enhances the spatial spreading of the wave packet, and quantum skipping-like trajectories are induced when the envelop function of the wave packet covers several subbands in appropriate magnetic fields.Comment: RevTeX, 9 pages with 8 included postscript figure

    Rashba spin orbit interaction in a quantum wire superlattice

    Get PDF
    In this work we study the effects of a longitudinal periodic potential on a parabolic quantum wire defined in a two-dimensional electron gas with Rashba spin-orbit interaction. For an infinite wire superlattice we find, by direct diagonalization, that the energy gaps are shifted away from the usual Bragg planes due to the Rashba spin-orbit interaction. Interestingly, our results show that the location of the band gaps in energy can be controlled via the strength of the Rashba spin-orbit interaction. We have also calculated the charge conductance through a periodic potential of a finite length via the non-equilibrium Green's function method combined with the Landauer formalism. We find dips in the conductance that correspond well to the energy gaps of the infinite wire superlattice. From the infinite wire energy dispersion, we derive an equation relating the location of the conductance dips as a function of the (gate controllable) Fermi energy to the Rashba spin-orbit coupling strength. We propose that the strength of the Rashba spin-orbit interaction can be extracted via a charge conductance measurement.Comment: 9 pages, 9 figure
    corecore