14 research outputs found
Revisión del aprendizaje automático modelos para puntuación de análisis de crédito
Introduction:Increase in computing power and the deeper usage of the robust computing systems in the financial system is propelling the business growth, improving the operational efficiency of the financial institutions, and increasing the effectiveness of the transaction processing solutions used by the organizations.
Problem:Despite that the financial institutions are relying on the credit scoring patterns for analyzing the credit worthiness of the clients, still there are many factors that are imminent for improvement in the credit score evaluation patterns.
Objective:Machine learning is offering immense potential in Fintech space and determining a personal credit score. Organizations by applying deep learning and machine learning techniques can tap individuals who are not being serviced by traditional financial institutions.
Methodology:One of the major insights into the system is that the traditional models of banking intelligence solutions are predominantly the programmed models that can align with the information and banking systems that are used by the banks. But in the case of the machine-learning models that rely on algorithmic systems require more integral computation which is intrinsic.
Results:The test analysis of the proposed machine learning model indicates effective and enhanced analysis process compared to the non-machine learning solutions. The model in terms of using various classifiers indicate potential ways in which the solution can be significant.
Conclusion: If the systems can be developed to align with more pragmatic terms for analysis, it can help in improving the process conditions of customer profile analysis, wherein the process models have to be developed for comprehensive analysis and the ones that can make a sustainable solution for the credit system management.
Originality:The proposed solution is effective and the one conceptualized to improve the credit scoring system patterns.
Limitations: The model is tested in isolation and not in comparison to any of the existing credit scoring patterns. 
Computational intelligence techniques for comparative genomics: dedicated to Prof. Allam Appa Rao on the occasion of his 65th birthday
This Brief highlights Informatics and related techniques to Computer Science Professionals, Engineers, Medical Doctors, Bioinformatics researchers and other interdisciplinary researchers. Chapters include the Bioinformatics of Diabetes and several computational algorithms and statistical analysis approach to effectively study the disorders and possible causes along with medical applications
Computational intelligence in medical informatics
This Brief highlights Informatics and related techniques to Computer Science Professionals, Engineers, Medical Doctors, Bioinformatics researchers and other interdisciplinary researchers. Chapters include the Bioinformatics of Diabetes and several computational algorithms and statistical analysis approach to effectively study the disorders and possible causes along with medical applications
EMG signals characterization in three states of contraction by fuzzy network and feature extraction
Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used
Computational methods in molecular imaging technologies
This book highlights the experimental investigations that have been carried out on magnetic resonance imaging and computed tomography (MRI & CT) images using state-of-the-art Computational Image processing techniques, and tabulates the statistical values wherever necessary. In a very simple and straightforward way, it explains how image processing methods are used to improve the quality of medical images and facilitate analysis. It offers a valuable resource for researchers, engineers, medical doctors and bioinformatics experts alike
Computational Methods in Molecular Imaging Technologies
This book highlights the experimental investigations that have been carried out on magnetic resonance imaging and computed tomography (MRI & CT) images using state-of-the-art Computational Image processing techniques, and tabulates the statistical values wherever necessary. In a very simple and straightforward way, it explains how image processing methods are used to improve the quality of medical images and facilitate analysis. It offers a valuable resource for researchers, engineers, medical doctors and bioinformatics experts alike
Multi-controller model for improving the performance of IoT networks
Internet of Things (IoT), a strong integration of radio frequency identifier (RFID), wireless devices, and sensors, has provided a difficult yet strong chance to shape existing systems into intelligent ones. Many new applications have been created in the last few years. As many as a million objects are anticipated to be linked together to form a network that can infer meaningful conclusions based on raw data. This means any IoT system is heterogeneous when it comes to the types of devices that are used in the system and how they communicate with each other. In most cases, an IoT network can be described as a layered network, with multiple tiers stacked on top of each other. IoT network performance improvement typically focuses on a single layer. As a result, effectiveness in one layer may rise while that of another may fall. Ultimately, the achievement issue must be addressed by considering improvements in all layers of an IoT network, or at the very least, by considering contiguous hierarchical levels. Using a parallel and clustered architecture in the device layer, this paper examines how to improve the performance of an IoT network’s controller layer. A particular clustered architecture at the device level has been shown to increase the performance of an IoT network by 16% percent. Using a clustered architecture at the device layer in conjunction with a parallel architecture at the controller layer boosts performance by 24% overall