141 research outputs found

    The Development and Evolution of the Soil Health Nutrient Tool (AKA Haney Test) after Ten Years of Implementation in a Commercial Agricultural Laboratory

    Get PDF
    The growing focus on soil health and regenerative agriculture has brought about the need for new integrated approaches for the analysis of soil. Prior, commercial agricultural laboratories relied on methods to measure chemical properties of the soil, such as pH and nutrients. The Soil Health Nutrient Tool (aka. Haney Test) developed by Dr. Rick Haney (USDA-ARS Blackland Research and Extension Station, Temple, TX) integrates chemical and biological properties to provide a more holistic understanding of soil fertility management. Following adoption by commercial laboratories in 2013, criticisms regarding variability in measurements and lack of calibration were apparent. In this research, we present the development of new tools and instrumentation to reduce variability of specific measures, namely soil respiration, used as part of the test. The development of the Soil Respiration-1 (SR-1) instrument, which employs an infrared gas analysis (IRGA) detector for measuring carbon dioxide (CO2) was compared to the Solvita® gel system. The data suggest that Solvita® underestimates CO2 respiration at values above 100 mg CO2-C kg-1 and overestimates values below 30 mg CO2-C kg-1, compared to the SR-1, leading to compounding effects on the overall results of the Haney Test. These findings led to the development of the Mini-Cube using nondispersive infrared (NDIR) microsensor technology as a potential cost-effective solution compared to the SR-1. The comparison yielded a strong correlation (r2=0.99, p\u3c0.001) and suggests that the Mini-Cube could be a viable, cost-effective option for soil respiration in commercial laboratories. We then explored complimentary measures to CO2 respiration by coupling an IRGA CO2 sensor with UV Flux to measure oxygen (O2) consumption. The results show that O2 uptake is correlated (r2 = 0.97, p \u3c 0.001) to CO2 efflux, and could be used in lieu of CO2 measurements for biological activity. Finally, we explore the utility of the Haney test as a tool for regenerative agriculture verification processes using Regen Certified® and Microbially Verified Carbon scoring. Advisor: Rhae A. Drijbe

    Pathology and failure in the design and implementation of adaptive management

    Get PDF
    The conceptual underpinnings for adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex ecological systems as a result non-linear interactions among components and emergence, yet management decisions must still be made. The strength of adaptive management is in the recognition and confrontation of such uncertainty. Rather than ignore uncertainty, or use it to preclude management actions, adaptive management can foster resilience and flexibility to cope with an uncertain future, and develop safe to fail management approaches that acknowledge inevitable changes and surprises. Since its initial introduction, adaptive management has been hailed as a solution to endless trial and error approaches to complex natural resource management challenges. However, its implementation has failed more often than not. It does not produce easy answers, and it is appropriate in only a subset of natural resource management problems. Clearly adaptive management has great potential when applied appropriately. Just as clearly adaptive management has seemingly failed to live up to its high expectations. Why? We outline nine pathologies and challenges that can lead to failure in adaptive management programs. We focus on general sources of failures in adaptive management, so that others can avoid these pitfalls in the future. Adaptive management can be a powerful and beneficial tool when applied correctly to appropriate management problems; the challenge is to keep the concept of adaptive management from being hijacked for inappropriate use

    Letter Resisting Resilience Theory: AResponse to Connelland Ghedini

    Get PDF
    ConnellandGhedini [1] arguethatecolo- gistsareprimarily [1TD$DIF]concernedwithcommu- nitychangeandtendtoignoreprocesses liketrophiccompensationthatcontribute to communityorsystem-levelstability. Resilience,theyclaim,isthestudyof change,andresearchersshouldspend moretimestudyingstabilizingprocesses to betterpredictthetypesofchanges documentedbyecologistswhostudyresil- ience [2,3]. Thebulkoftheirpaper addressesresilienceandrelatedconcepts to contextualizeresistancetochange,but theirargumentsarediminishedbecause theauthorsfailtoexplicitlyplacetheirwork withintherangeofresilienceconceptsthat haveproliferatedacrossacademicdisci- plines.Moreimportantly,thepaperfurthers confusionregardingcoreecologicalresil- ienceconcepts.Withinthedisciplineof ecology,resilienceconceptshavebeen developedinafundamentallycohesive way [4]. Understandingtheresilienceof complexsystemsofhumansandnature duringthistimeofrapidglobalchangeis importantandthemisuseorcasualuseof conceptswithspecific meaningismore thansimplyatrivialpointofcontention;it potentiallyobscuresprocessesandprop- ertiesthathavedirectrelevancetohuman- ity\u27sinteractionwiththeenvironment

    Panarchy and management of lake ecosystems

    Get PDF
    A key challenge of the Anthropocene is to confront the dynamic complexity of systems of people and nature to guide robust interventions and adaptations across spatiotemporal scales. Panarchy, a concept rooted in resilience theory, accounts for this complexity, having at its core multiscale organization, interconnectedness of scales, and dynamic system structure at each scale. Despite the increasing use of panarchy in sustainability research, quantitative tests of its premises are scarce, particularly as they pertain to management consequences in ecosystems. In this study we compared the physicochemical environment of managed (limed) and minimally disturbed reference lakes and used time series modeling and correlation analyses to test the premises of panarchy theory: (1) that both lake types show dynamic structure at multiple temporal scales, (2) that this structure differs between lake types due to liming interacting with the natural disturbance regime of lakes, and (3) that liming manifests across temporal scales due to cross-scale connectivity. Hypotheses 1 and 3 were verified whereas support for hypothesis 2 was ambiguous. The literature suggests that liming is a “command-and-control” management form that fails to foster self-organization manifested in lakes returning to pre-liming conditions once management is ceased. In this context, our results suggest that redundance of liming footprints across scales, a feature contributing to resilience, in the physicochemical environment alone may not be enough to create a self-organizing limed lake regime. Further research studying the broader biophysical lake environment, including ecological communities of pelagic and benthic habitats, will contribute to a better understanding of managed lake panarchies. Such insight may further our knowledge of ecosystem management in general and of limed lakes in particular

    Quantifying the Adaptive Cycle

    Get PDF
    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems

    Quantifying the Adaptive Cycle

    Get PDF
    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems

    Panarchy use in environmental science for risk and resilience planning

    Get PDF
    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in sociotechnical resilience thinking and adaptive and transformative approaches to managemen
    • …
    corecore