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Abstract
The adaptive cycle was proposed as a conceptual model to portray patterns of change in

complex systems. Despite the model having potential for elucidating change across sys-

tems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We

use a quantitative approach for testing premises (reorganisation, conservatism, adaptation)

in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such

complex system dynamics. Phytoplankton organizes in recurring spring and summer

blooms, a well-established paradigm in planktology and succession theory, with character-

istic temporal trajectories during blooms that may be consistent with adaptive cycle phases.

We used long-term (1994–2011) data and multivariate analysis of community structure to

assess key components of the adaptive cycle. Specifically, we tested predictions about:

reorganisation: spring and summer blooms comprise distinct community states; conserva-

tism: community trajectories during individual adaptive cycles are conservative; and adapta-

tion: phytoplankton species during blooms change in the long term. All predictions were

supported by our analyses. Results suggest that traditional ecological paradigms such as

phytoplankton successional models have potential for moving the adaptive cycle from a

metaphor to a framework that can improve our understanding how complex systems orga-

nize and reorganize following collapse. Quantifying reorganization, conservatism and adap-

tation provides opportunities to cope with the intricacies and uncertainties associated with

fast ecological change, driven by shifting system controls. Ultimately, combining traditional

ecological paradigms with heuristics of complex system dynamics using quantitative

approaches may help refine ecological theory and improve our understanding of the resil-

ience of ecosystems.
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Introduction
Structural and functional properties and processes of complex adaptive systems are dynamic,
with periods of growth, destruction and decay that vary across scales of space and time [1].
Within the ecological sciences, succession of forests through different stages over centuries [2]
or the seasonal dynamics of plankton [3] are examples of constant change and renewal, and
have become well-established paradigms in ecology. Within the social systems, the rise and fall
of ancient societies [4] and changes in current western societies, driven by industrial and tech-
nological advances [5], are analogous examples of dynamic system change.

Comparing patterns of change across complex systems has led to the development of a
model that accounts for observed dynamics, while simplifying the complexity inherent in eco-
logical and social systems, referred to as an adaptive cycle [6–7]. Change is characterized in
four phases: (1) an r-phase, which consists of rapid exploitation of resources and therefore fast
growth, (2) a K-phase comprising a steady-state period and conservation of resources and
structure, (3) an O-phase when the system collapses, releasing accumulated energy and
resources, and (4) an α-phase when the system reorganizes, either into a configuration with
similar or different properties; that is, when the system either reorganizes within the same
basin of attraction or when it undergoes a regime shift (Fig 1). From a systems perspective,
these four phases emphasize change in the organization of complex systems as a result of shift-
ing feedbacks and controls. This capacity to organize in response to disturbances has therefore
implications for the resilience of complex systems [8].

The conceptual linkages between system attributes (e.g., species composition and their func-
tional roles), processes and resilience have made the adaptive cycle a valuable tool in the analy-
sis and management of social and ecological systems in the current period of rapid
environmental and social-ecological change [9]. However, the adaptive cycle has been used pri-
marily in a qualitative context examining societal responses to environmental, climate and eco-
nomic changes [10–12], human behaviour [13,14], and social-ecological systems dynamics
[15,16]. Ecological studies of the adaptive cycle are scant and merely descriptive [17].

Fig 1. Schematic description of the adaptive cycle. It shows transitioning between four phases (α, r, K,Ω)
within a specific regime (full white arrows) and the potential to change to a new regime in the reorganisation
phase (dotted white arrow). Modified from Gunderson and Holling (2002).

doi:10.1371/journal.pone.0146053.g001
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As a heuristic, the adaptive cycle can help envision the organization of seemingly complex
dynamics in ecosystems, linked social–ecological systems and governance [1]. For the adaptive
cycle model to develop beyond a conceptual framework for envisioning complex dynamics and
to provide useful management guidance, explicit tests of the underlying premises are required.
The adaptive cycle covers many facets of complex system dynamics including reorganization,
conservatism and adaptation. In this paper we use phytoplankton succession to test these facets
of the adaptive cycle. We define reorganization as a substantial change in phytoplankton com-
munity structure between spring and summer blooms, which occur during seasonal succession
cycles [3]. Conservatism refers to community trajectories during individual adaptive cycles
that may include community build-up, saturation, and collapse phases independent of the tax-
onomic composition of blooms. Adaptation accounts for taxonomic turnover within inter-
annually recurring (conservative) blooms in the long-term, which may be modulated by chang-
ing abiotic and biotic conditions. Assessing these facets in complex systems dynamics has been
challenging. Most quantitative studies use complex modelling and simulation approaches for
assessing complex adaptive systems [18–20]. The adaptive cycle model provides opportunities
to assess these facets in real systems using statistical tools common in ecology. An understand-
ing of reorganization, conservatism and adaptation may refine current theories regarding sys-
tem dynamics (e.g. resilience theory) and may provide management guidance and decision
support.

We used a quantitative approach to study long-term dynamics (1994–2011) of phytoplank-
ton communities in the Baltic Sea. Phytoplankton is a useful model for studying adaptive cycles
for the following reasons. Communities are species rich and dynamics show complex adaptive
system behaviour, modulated through feedbacks that arise between interacting biological
(competition and top-down effects resulting from zooplankton grazing and trophic cascades)
and abiotic (nutrients, temperature, stratification) factors [1,21,22]. These dynamics have been
widely studied in planktology and succession theory, and have become well-established para-
digms in ecology [2,3,22]. These paradigms are useful for an assessment of adaptive cycles
from a structural perspective through analyses of the taxonomic composition of communities.
Phytoplankton communities demonstrate seasonal patterns with groups of species developing
into spring and summer blooms [22,23], although these patterns can vary between ecosystems
[24]. Given this context dependence, it is important to define the temporal window of bloom
dynamics to delineate the adaptive cycles for the study system. Specifically in the Baltic Sea,
spring blooms typically occur between March and May, while summer blooms develop from
June to August (Fig 2). These blooming periods are stable and recur annually, providing an
opportunity to assess predictions that follow from the characterization of these dynamics as
consistent with adaptive cycles.

In the Baltic Sea, the spring bloom is a response to seasonal increases in solar radiation and
temperature, and possibly stratification caused by vertical thermal and salinity gradients fol-
lowing winter mixing. The bloom is initially comprised of fast-growing diatoms, followed by
slower-growing dinoflagellates. Spring blooms are characterized by high phytoplankton bio-
mass. As nutrients are depleted and temperatures increase, spring blooms collapse and the phy-
toplankton community reorganizes into a summer bloom, during which many inedible taxa,
including cyanobacteria and flagellates, dominate. This is partly due to a reconfiguration of the
food web in summer that results in altered biotic feedbacks whereby zooplankton grazing and
trophic cascades influence community dynamics of phytoplankton [3,22]. In short, system
extrinsic (environmental variables) and intrinsic (biological interaction) factors interact to
mediate community dynamics within and between spring and summer blooms, thereby influ-
encing the adaptive cycle-type behavior of phytoplankton. Furthermore, phytoplankton in the
Baltic Sea undergo changes both in community composition and bloom phenology in the long
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term [25–27], a consequence of anthropogenic environmental change, including eutrophica-
tion and overfishing that alter abiotic and biotic controls in the system [28–30]. However, com-
plex cause-effect chains between winter temperature and nutrient dynamics influence
feedbacks in the Baltic Sea [31]. The complex interaction between natural and anthropogenic
factors leads to process in the phytoplankton community that filter out species from the com-
munity that are adapted to the resulting environmental conditions; also community responses
to these changes differ between spring and summer [31].

The seasonally recurring spring and summer blooms together with longer-term environ-
mental changes that affect phytoplankton dynamics allow for testing specific predictions
regarding reorganization while maintaining adaptability in this specific complex system. We
use observations made in phytoplankton successional studies and adopt them to the adaptive
cycle model testing the following predictions:

1. Phytoplankton operate in different community states or adaptive cycles given distinct abi-
otic and biotic conditions between spring and summer blooms.

2. During community trajectories within blooms, distinct phases of the adaptive cycle, remi-
niscent of community build-up, saturation, and collapse, are evident and these patterns are
preserved during recurrent blooms. These community trajectories within spring and sum-
mer blooms are therefore expected to be conservative.

3. Changes of ecological baselines due to environmental change (e.g. climate warming, nutri-
ent patterns, foodweb change) modulates phytoplankton responses that affect the spring

Fig 2. Phytoplankton biomass. Box plots showing phytoplankton biomass (microgram C L-1) between March and August for the period 1994–2011 at two
sites (coastal, offshore) in the Baltic Sea. Two periods with peak biomass in April and July occur at both sites, and characterize distinct spring and summer
phytoplankton blooms in the Baltic Sea.

doi:10.1371/journal.pone.0146053.g002
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and summer blooms differentially. That is, despite conservative seasonal community trajec-
tories within blooms, environmental and biological filtering processes select for sets of spe-
cies adapted to prevailing ecological conditions in the Baltic Sea in the long term.

Material and Methods

Ethics Statement
All field sampling and laboratory analyses reported in this study are part of the Baltic Sea Mon-
itoring Program and are approved by the Swedish Agency for Marine and Water Management
(HaV). Data used in this study are available through the Dryad Digital Repository (http://dx.
doi.org/10.5061/dryad.8hj8t) or the Swedish Meteorological and Hydrological Institute
(SMHI). It is confirmed that the field studies did not involve endangered or protected species.

Sites and sampling
Standardized sampling and analysis protocols were used throughout the study. Water quality
(temperature, phosphate, dissolved inorganic nitrogen, Secchi depth, salinity, mixed layer
depth) and phytoplankton were assessed at the coastal station B1 near Askö (58°48’N, 17°38’
E, 40 m deep) and from the offshore station BY31 at Landsort Deep (58°35.90’ N, 18°14.21’ E,
459 m deep), in the NW Baltic Proper, the southern part of the Baltic Sea. We here used data
collected approximately fortnightly and spanning 1994–2011 for spring (March to May) and
summer (June to August) for the coastal and offshore station.

Secchi depth was measured by lowering a white 250 mm disc into the water until it could
not be seen through a water scope. Temperature, salinity, dissolved inorganic nitrogen (DIN),
phosphate and Chlorophyll a were measured every fifth meter and we estimated average values
for the upper 20 m (for chemical analysis and further details see [32]). For calculating mixed
layer depth (MLD), we estimated vertical profiles of water density from temperature, salinity
and depth data from a CTD probe. We defined the MLD as the depth where the density was
0.15 kg�m-3 higher than at 1.5 m depth.

Phytoplankton samples were taken as integrated samples with a sampling hose (inner diam-
eter 19 mm) from 0 to 20 m and preserved with acid Lugol’s solution [33]. Phytoplankton
(> 2 μm) were counted after sedimentation in 10- or 25-mL chambers using an inverted
microscope with phase contrast and cells were measured and size classed according to the
methods described in the HELCOM guidelines [34]. Species-specific, size-classed cell volumes
were used to calculate the biovolume of each species, using the recommendations by Olenina
et al. [35] and the related standard volumes (http://www.ices.dk/marine-data/vocabularies/
Documents/PEG_BVOL.zip).

Statistical analyses
Water quality. We calculated a seasonal average and standard deviations of water quality

variables for each season and tracked their patterns in the coastal and offshore site over the
study period (1994–2011). This showed that the abiotic environment differs between summer
and spring. A similar analysis was carried out for Chlorophyll a, a measure of phytoplankton
biomass. We also used nonmetric multidimensional scaling ordinations (NMDS) to comple-
ment the analysis of univariate patterns with a multivariate approach. Water quality data used
in the analysis (excluding Chlorophyll a) were standardized and converted into a Euclidean
distance matrix before analysis. The NMDS result was based on 999 re-runs to achieve
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convergence of the ordination solution, and the resulting stress value (0.03) indicated a reliable
solution [36].

Phytoplankton. We used NMDS to show the adaptive cycle behaviour of phytoplankton
communities during spring and summer. The ordinations were based on Bray–Curtis dissimi-
larity matrices, which were calculated from square-root transformed phytoplankton biovolume
data for each sampling event (n = 7–9 between March and May [spring], n = 6–7 between June
and August [summer]) during each season. Because an analysis including the whole data set
resulted in an unreliable ordination (stress> 0.2; [36]), each site and season was analyzed sepa-
rately using all years in NMDS analyses. Separate analyses were considered appropriate for
visually confirming the quantitative approach based on permutational multivariate ANOVA
(below), although we acknowledge that this division limits an assessment of the transition (or
re-organization) phase between spring and summer blooms. Analyses were conducted in
Primer 6 (Primer-E Ltd, Plymouth, UK) using 999 re-runs to provide sufficient iterations for
achieving convergence in the ordination solution. This resulted in four ordinations (spring and
summer for both the coastal and offshore site). The resulting stress values were< 0.2, suggest-
ing acceptable solutions [36]. Preliminary explorations revealed similar patterns of community
dynamics during individual years. We therefore plotted averaged patterns for 5 periods, con-
sisting of 4 years and the first of 2 years (1994–1995, 1996–1999, 2000–2003, 2004–2007,
2001–2008) to facilitate interpretation of the plots.

The NMDS analyses were followed by Spearman rank correlation analysis. Here, the raw
biovolume data of each phytoplankton species were correlated with NMDS dimensions 1 and
2. We carried out separate analysis for each study year, using the ordination scores from the
spring/summer and coastal/offshore NMDS ordinations and the phytoplankton biovolume
raw data of these seasons/sites. This analysis facilitated an assessment of taxonomic change
(frequencies and incidences of correlations of specific taxa) underlying the multivariate
changes documented in the NMDS.

Permutational multivariate ANOVA (PERMANOVA) [37], a multivariate analogue to anal-
ysis of variance, was used as a numerical approach to quantify aspects of the adaptive cycle
related to reorganization, conservatism and adaptation. PERMANOVA was carried out to con-
trast multivariate phytoplankton community structure between spring and summer blooms (B;
i.e. average phytoplankton community structure in spring and summer; fixed factor), time (Ti;
categorical factor comprising the study period between 1994 and 2011; random factor) and sea-
son nested in time (Se(Ti); covering the dynamic aspect within blooms; that is, three monthly
values were used to characterize phytoplankton community dynamics during spring (March,
April, May) and summer (June, July, August) respectively; random factor). Interactions
between these terms were also tested in this model. Three terms were considered crucial for
testing the predictions related to reorganization, conservatism and adaptation facets of phyto-
plankton adaptive cycles in the Baltic Sea: 1) The term “blooms (B)” allows for testing whether
phytoplankton communities differ between spring and summer. From an adaptive cycle per-
spective it provides insight whether phytoplankton reorganize around a new structure, in
terms of community composition, during summer after the spring cycle has collapsed. If reor-
ganization occurs, this term will be significant. 2) The interaction term “B x Se(Ti)” tests for
dynamic change of taxonomic composition within cycles. In the adaptive cycle context, these
dynamics may be reminiscent of community build-up, saturation and collapse phases. Because
these patterns are expected to be conservative, despite potential changes in phytoplankton
community structure over the entire study period, no significant interaction term should be
detected. 3) The interaction term “B x Ti” allows for testing whether species contributions to
spring and summer phytoplankton community dynamics change over the study period. Given
documented changes in phytoplankton community structure, particularly during summer
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found in other areas of the Baltic Sea during the period of our study [25–27] this term is
expected to be significant.

PERMANOVA was calculated on a Bray–Curtis dissimilarity matrix of square-root trans-
formed biovolume data of phytoplankton species. Because this analysis was unable to handle
unbalanced designs (different temporal sampling resolution during seasons between years; see
above), we averaged values to obtain three single-month values for each season (i.e. March,
April, May for spring; June, July, August for summer), and using sites (coastal, offshore) as rep-
licates in the analysis. Bray-Curtis dissimilarities allowed for assessing both the importance of
species incidences and their abundances in the analyses. We contrasted the Bray-Curtis based
approach, with a PERMANOVA analysis using data transformations into Sorensen dissimilar-
ity matrices, which only accounts for changes in species presence/absence patterns. This allows
assessing how sets of species change within adaptive cycles (spring, summer) and over the
study period (1994–2011). We used 9999 unrestricted permutations of raw data using PERMA-
NOVA v1.6 [37], and significance was assessed using Monte Carlo asymptotic P values.
Because PERMANOVAs based on Bray-Curtis and Sorensen dissimilarity showed identical
results, we show the results of the Bray-Curtis dissimilarity based results only.

Results

Water quality
The abiotic environment differed between both seasons at the coastal and offshore site, with
average salinity, nutrients (phosphate, DIN), Secchi depth (indicating light conditions) and
mixed layer depth being lowest in summer and water temperature being lowest in spring at
both sites (Fig 3). Also phytoplankton biomass, measured as chlorophyll a, was lower in sum-
mer compared to spring at the coastal and offshore site (Fig 3). The differences in the abiotic
conditions between seasons were also evident in the NMDS analysis, with spring and summer
patterns clearly separated in ordination space (Fig 4). The between-year variability in water
quality was higher in spring compared to summer, and both sites showed similar patterns of
change in each season during the study period (Fig 4).

Phytoplankton dynamics
PERMANOVA was used to quantify phytoplankton community dynamics in the Baltic Sea.
The analysis detected a significant “bloom” (B) effect (Table 1), indicating that phytoplankton
community structure differed between spring and summer blooms. The significant effect of Se
(Ti) also captures the dynamic change of phytoplankton within each bloom, indicating distinct
communities at the beginning and the end of each bloom. The significant effect of time (i.e.
study years) highlights that the taxonomic composition of blooms is changing in the long term
(1994–2011). The significant interaction term B x Ti highlights that phytoplankton community
dynamics during spring and summer blooms differed over the study period, supporting the
argument that spring and summer blooms differ in terms of community structure. Finally, the
interaction term B x Se(Ti) was not significant. This indicates that, despite community changes
observed in the long term, community trajectories within blooms are conservative over time.

The NMDS analysis underpins visually the results of the PERMANOVA. It revealed rela-
tively conservative patterns of phytoplankton community dynamics during spring at the
coastal and offshore sites over the study period (Fig 5), despite the differences in between-year
variability observed for water quality (Fig 3). The movement in ordination space captured U-
shaped trajectories in spring at both sites, highlighting distinct community structures during
the beginning and end of spring that are reminiscent of the community build-up, saturation
and collapse phases of the adaptive cycle model. During summer blooms the dynamics were
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more variable inter-annually at both sites relative to spring blooms. We observed both U-
shaped patterns and zigzagging trajectories during distinct periods in summer (Fig 5). As was
the case for spring dynamics, community composition at the beginning and end of summer
differed, despite summer blooms showing more variable and irregular cycling behaviour rela-
tive to spring blooms.

Spearman rank correlation analysis revealed variability in the incidence of correlation of
phytoplankton taxa with the NMDS dimensions over the study years (Fig 6). That is, positive
correlations of species raw biovolume data with NMDS 1 and 2 dimensions indicate that a spe-
cies dominates the phytoplankton community towards the right and upper part of the

Fig 3. Temporal patterns of abiotic and biotic variables. Temporal patterns of phytoplankton biomass
(Chlorophyll a) and abiotic variables at two stations (coastal, offshore) and seasons (spring, summer). Shown
are seasonal averages ± SDs between 1994 and 2011.

doi:10.1371/journal.pone.0146053.g003

Fig 4. Multivariate ordination. Nonmetric multidimensional scaling (NMDS) ordinations showing seasonal averages of water quality trajectories during
spring and summer in the coastal and offshore site between 1994 and 2011. The length of each arrow reflects change from one sampling year to the next.

doi:10.1371/journal.pone.0146053.g004
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ordination, respectively. Negative correlations of species biovolumes with NMDS 1 and 2 high-
light dominance towards the left and lower part of the ordination, respectively. For simplicity
we only present species with high correlation coefficients (|0.8|—|1.0|), i.e. those dominating
community dynamics described by the NMDS analysis. In practical terms we can describe sev-
eral patterns that emerged from the analysis. First, during spring dynamics we observed broad
shifts of communities from dominant diatoms (Bacillariophyceae), particularly Thalassiosira
sp., Skeletonema sp. and Chaetoceros sp., to Dinophyta at both sites. Unidentified flagellates,
Pyramimonas (Prasinophyceae), Eutreptiella (Euglenophyceae), andMesodinium (Ciliophora)
also contributed to these patterns, although to a different degree at both sites (Fig 6).

Cyanobacteria were generally not contributing to community dynamics during spring.
However, during summer they showed a high incidence of correlations across study years,
while diatoms played a little role in summer community trajectories (Fig 6). Dinophytes and
Mesodinium were still important at the beginning of summer, highlighting “spill-over” from
the spring cycles, but these taxa decreased over summer and were replaced by Cryptophyta,
and occasionally Chrysophyceae.

Discussion
In this study we used phytoplankton seasonal succession, a well-studied object in planktology,
for evaluating ecological complexity theory, specifically facets of the adaptive cycle quantita-
tively. Results show that traditional phytoplankton successional models and the adaptive cycle
are not mutually exclusive. The adaptive cycle offers a broader view that allows the concept of
succession [2,3,22] to be neatly viewed within models of complex system dynamics [1,7].

Ecologists have a long-lasting interest in understanding patterns and processes influencing
seasonal plankton dynamics [3,38]. Consistent with a multitude of studies in freshwater and
marine environments, our study found a high turnover with species and major taxonomic
groups replacing each other during the growing season. These taxonomic changes also entail
functional changes in the phytoplankton communities. For instance, diatoms dominate spring
blooms initially but were replaced by dinoflagellates towards the end of the spring bloom. Dia-
toms are fast growing when there is high nutrient availability and have therefore been referred
to as r strategists by phytoplankton ecologists [39]. Dinoflagellates are slow growing, competi-
tively inferior to diatoms and dominate during low nutrient concentrations [39]. They have
been considered K strategists in phytoplankton ecology [40]. These examples show a good fit
between phytoplankton life history strategies and phases of the adaptive cycle. Diatoms reflect-
ing the r phase of the adaptive cycle and thus characterize community build-up, while dinofla-
gellates characterize the K phase of steady state conditions. This highlights that the adaptive
cycle as a heuristic captures accurately ecological patterns in real ecosystems.

Table 1. Results of PERMANOVA analysis contrasting multivariate community structure across blooms (B, phytoplankton spring and summer
blooms), time (Ti, long-term period from 1994 to 2011), season nested in time (Se(Ti), 3 months comprising each bloom) and their interactions.
Shown are degrees of freedom (df), sums of squares (SS), mean squares (MS), F-ratios (F), and the Monte Carlo asymptotic P values (P).

Source df SS MS F P

B 1 74110 74110 31.2 0.0001

Ti 17 367770 2163 4.2 0.0001

Se(Ti) 36 18415 512 1.3 0.011

B x Ti 17 40425 2378 5.7 0.001

B x Se(Ti) 36 14973 416 1.1 0.223

Residual 108 40963 379

Total 215 225656

doi:10.1371/journal.pone.0146053.t001
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Seasonal patterns in plankton communities have been generally discussed in the context of
successional change [22]. By definition, ecological succession is the observed process of change
in the species structure of an ecological community over time. The adaptive cycle provides a
complementary view. The differences observed in phytoplankton community composition in
spring and summer suggest a high turnover in phytoplankton community dynamics in the Bal-
tic Sea, consistent with patterns documented for a plethora of marine systems and lakes
[24,38]. This substantial ecological turnover suggests that spring and summer phytoplankton
comprise alternative community states (Fig 7). This interpretation fits current theory that not

Fig 5. Multivariate ordination. Nonmetric multidimensional scaling (NMDS) ordinations showing community trajectories during spring and summer
sampling occasions in the coastal and offshore site. Different colors represent averaged time periods. The length of each arrow reflects community change
from one sampling event to the next.

doi:10.1371/journal.pone.0146053.g005
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only ecosystems but also ecological communities, which comprise complex adaptive systems
[21], can undergo regime changes [1]. This community-level regime shift observed for phyto-
plankton is not only due to substantial abiotic change (temperature, salinity, nutrients, stratifi-
cation) but also biotic change between spring and summer. This biotic change includes altered
food web structure, resulting in higher zooplankton grazing and trophic cascades that influence
community dynamics of phytoplankton [3,22,24,38]. This is reflected in the significant main
effect “Blooms” in our PERMANOVA model, which found a significant difference in

Fig 6. Species correlations with multivariate patterns. Score plots showing contributions of phytoplankton species to temporal trajectories of
phytoplankton community dynamics identified by NMDS during spring and summer at the coastal and offshore site, based on Spearman rank correlation
analyses. Only taxa with significant correlations with NMDS dimensions (P < 0.05) and high correlation coefficient (Spearman´s rho > 0.8) are shown. For
better visibility taxa are aggregated to genus level.

doi:10.1371/journal.pone.0146053.g006
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Fig 7. Conceptual figure. Summary of results of this study showing the complementarity of the traditional
phytoplankton successional model (lower diagram) with adaptive cycles theory. Shown are spring and
summer blooms and how they change interannually from an adaptive cycle perspective. Different shapes
indicate that community changes within blooms are dynamic but these changes must not necessarily reflect
adaptive cycle phases. These shapes of community change are often recurrent highlighting conservative
patterns. Despite this, species contributions to these dynamics may change over time (different shades of
gray), affecting spring and summer blooms distinctly, highlighting potential adaptive responses to
environmental change.

doi:10.1371/journal.pone.0146053.g007
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phytoplankton community composition between spring and summer blooms. Combined with
the observation of fundamental changes in the environment, our findings suggest that the phy-
toplankton communities in spring and summer comprise alternative adaptive cycles, support-
ing our first prediction. This finding also supports a recent lake study, based on complex time
series modelling, which has shown that phytoplankton seasonal succession across lakes with
different disturbance regimes fits the adaptive cycle model [41].

In addition to the high turnover in community composition observed between spring and
summer, our study and many others have found that even within blooms communities are
highly dynamic, with community composition changing from the onset to the collapse of
blooms. Also this within-bloom dynamics fit the adaptive cycle model well. The adaptive cycle
as a simplified model of complex system dynamics emphasizes development through different
stages (Figs 1 and 7). Some studies have suggested that these dynamics can be context depen-
dent, and deviations from this simplified trajectory may occur in some systems [42–44]. This
was also reflected in our study. Our results suggest that phytoplankton community dynamics
can be conservative within a cycle but community composition can be plastic in the long-term.
That is, the non-metric multidimensional scaling ordinations (NMDS) found similar spring
dynamics at the coastal and offshore site over the study period, showing patterns reminiscent
of community build-up, saturation and collapse phases of the adaptive cycle. These patterns
were relatively stable over the study period, despite the high between-year variability in water
quality. This variability can be ascribed to differences in environmental conditions during the
beginning of blooms that in part depend on the severity and length of the winter season (O.
Hjerne, unpublished results). On the other hand, the temporal patterns were less clear in sum-
mer, when greater variability, including oscillation in ordination space was observed. Despite
this, the communities had a clear directional component of change, manifested in initial com-
munity structure developing towards a distinct community with different sets of species by the
end of the bloom. This was reflected in our PERMANOVA results. The insignificant interac-
tion term between Blooms and Season(Time) suggests that, despite the observed variability,
within-bloom dynamics between spring and summer are similar. From an adaptive cycle per-
spective, this suggests that patterns of community change are conservative, which supports our
second prediction.

In addition to assessing patterns of conservatism of community change observed during
individual blooms, our study allowed us to explore community change over recurrent spring
and summer blooms over the long term in the Baltic Sea. Specifically, phytoplankton blooms
undergo taxonomic and phenological changes due to the interaction of global change stressors,
including climate warming, eutrophication and fishing pressure [25–27]. The NMDS ordina-
tion demonstrated that patterns of change differ between summer and spring blooms. Largely
overlapping temporal trajectories over the study period highlight similar taxonomic composi-
tions during spring in the coastal and offshore site. In contrast, during summer, these patterns
were more disparate, indicating that individual periods differed in their community composi-
tion and in their temporal trajectories.

We used time-averaged data in the NMDS for a simpler visual representation of community
dynamics over the study period. Although between-year variability is compressed with this
approach, our main aim was to assess the degree of similarity in community dynamics between
sites (coastal, offshore) and season (spring, summer). The PERMANOVA results, which were
based on the analyses of individual years, are in agreement with our NMDS ordinations,
highlighting a significant interaction between Blooms and Time (i.e. study period 1994–2011).
This highlights that the long-term dynamics of phytoplankton differ between spring and sum-
mer blooms, with spring blooms being taxonomically more stable over time relative to summer
blooms. Such structural differences have been invoked previously with complex cause-effect
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chains between winter temperature and nutrient dynamics causing differential community
responses in spring and summer [31]. This also supports our third prediction about adaptation
in the long term. That is, environmental and biological filtering processes resulting from the
interplay of natural and anthropogenic disturbances select for sets of species that are adapted
to prevailing ecological conditions in the Baltic Sea in the long term. From a resilience perspec-
tive, this constant adjustment of ecosystem properties, including community composition,
function and processes reflects a system level property, adaptive capacity, which focuses on
“learning” and to anticipate and respond to disturbances [45,46].

We conclude by emphasizing the complementarity between “traditional” and “ecological
complexity” approaches for describing patterns and processes in ecosystems. Common statisti-
cal methods and well-established ecological paradigms, including phytoplankton community
seasonality, provide a significant advantage over complex modelling and simulation studies
and simplified surrogacy/indicator approaches for describing the complexity inherent in eco-
logical systems. Such an approach captures ecological patterns with high realism and allows for
moving the adaptive cycle from a metaphor to a framework that can be empirically assessed. In
turn, complexity theory, including the adaptive cycle model and its multi-scalar extension
(Panarchy theory [1]), allows differentiating conservative patterns versus adaptation in com-
plex systems dynamics undergoing change and has therefore strong potential to strengthen the
nexus between ecological theory, environmental change and monitoring [47]. This may ulti-
mately serve human societies for understanding how rapid environmental change affects the
resilience of ecosystems [48].
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