2,086 research outputs found

    The effects of chest wall loading on perceptions of fatigue, exercise performance, pulmonary function, and muscle perfusion.

    Get PDF
    BACKGROUND: Load carriage (LC), which directly affects the chest wall and locomotor muscles, has been suggested to alter the ventilatory and circulatory responses to exercise, leading to increased respiratory muscle work and fatigue. However, studies exploring the impact of LC on locomotion increased internal work, complicating their interpretation. To overcome this issue, we sought to determine the effect of chest wall loading with restriction (CWL + R) on cycling performance, cardiopulmonary responses, microvascular responsiveness, and perceptions of fatigue. METHODS: In a randomized crossover design, 23 young healthy males (22 \ub1 4 years) completed a 5 km cycling time trial (TT) in loaded (CWL + R; tightened vest with 10% body weight) and unloaded conditions. After baseline pulmonary function testing (PFT; forced expiratory volume in 1 s, FEV1; forced vital capacity, FVC), cardiopulmonary indices (HR, heart rate; O2 uptake, VO2; ventilation, VE; tidal volume, VT; and breathing frequency, Bf), rating of perceived exertion (RPE), lactate (BLa), and microvascular responses (oxy-, deoxy-, total hemoglobin; and tissue saturation; StO2) of the vastus lateralis using near infrared spectroscopy were collected during the TT; and PFT was repeated post-exercise. RESULTS: Pre-exercise, CWL + R reduced (p < 0.05) FVC (5.6 \ub1 0.8 versus 5.5 \ub1 0.7 L), FEV1 (4.8 \ub1 0.7 versus 4.7 \ub1 0.6 L), and FEV1/FVC (0.9 \ub1 0.1 versus 0.8 \ub1 0.1). CWL + R modified power output (PO) over time (interaction, p = 0.02), although the 5 km time (461 \ub1 24 versus 470 \ub1 27 seconds), VT (3.0 \ub1 0.3 versus 2.8 \ub1 0.8 L), Bf, VE, HR, VO2, microvascular and perceptual (visual analog scale, or VAS, and RPE) responses were unchanged (p > 0.05). CWL + R increased (p < 0.05) the average BLa (7.6 \ub1 2.6 versus 8.6 \ub1 3 mmol/L). CONCLUSIONS: Modest CWL + R negatively affects pre-exercise pulmonary function, modifies cycling power output over time, and increases lactate production during a 5 km cycling trial, although the cardiorespiratory, microvascular, and perceptual responses were unaffected

    COMPASS: a 2.6m telescope for CMBR polarization studies

    Get PDF
    COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented

    A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on the magnitude of any polarized anisotropy in the cosmic microwave background. The combination of the scan strategy and full width half maximum beam of 0.235 degrees gives broad window functions with average multipoles, l = 211+294-146 and l = 212+229-135 for the E- and B-mode window functions, respectively. A joint likelihood analysis yields simultaneous 95% confidence level flat band power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode angular power spectra, respectively. Assuming no B-modes, a 95% confidence limit of 10 microkelvin is placed on the amplitude of the E-mode angular power spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    Øysand research site: Geotechnical characterisation of deltaic sandy-silty soils

    Get PDF
    This paper describes the geology and geotechnical engineering properties of the fluvial and 18 deltaic gravelly-sandy-silty sediments at Øysand, Norway. Geophysical and geotechnical site 19 investigations carried out between 2016 and 2018 at the site are presented. Field testing included state-20 of-the-practice and state-of-the-art soil characterisation techniques such as total sounding, seismic 21 cone penetration testing, seismic flat dilatometer, multichannel analysis of surface waves, electrical 22 resistivity tomography, ground penetrating radar, piezometers, thermistors strings, slug tests, and 23 permeability tests using a newly developed CPT permeability probe from NGI. Several sampling 24 techniques were used at the site to assess sample quality. Laboratory testing consisted of index tests 25 and advanced triaxial tests with bender elements to estimate shear strength and stiffness. Data 26 interpretation, engineering soil properties and state variables derived from this analysis are presented, 27 along with comments on data quality. Engineering problems investigated at Øysand so far, are related 28 to: the impact of using different CPTU types, sample quality assessment by obtaining soils with state-29 of-the-practice and state-of-the-art techniques (such as gel push sampler and ground freezing), and 30 frost heave susceptibility

    Temperature inversion symmetry in the Casimir effect with an antiperiodic boundary condition

    Full text link
    We present explicitly another example of a temperature inversion symmetry in the Casimir effect for a nonsymmetric boundary condition. We also give an interpretation for our result.Comment: 4 page

    Measurements of Anisotropy in the Cosmic Microwave Background Radiation at 0.5 Degree Angular Scales Near the Star Gamma Ursae Minoris

    Full text link
    We present results from a four frequency observation of a 6 x 0.6 degree strip of the sky centered near the star Gamma Ursae Minoris during the fourth flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observation was made with a 1.4 degree peak-to-peak sinusoidal chop in all bands. The FWHM beam sizes were 0.55 +/- 0.05 degrees at 3.5 cm-1 and 0.75 +/-0.05 degrees at 6, 9, and 14 cm-1. During this observation significant correlated structure was observed at 3.5, 6 and 9 cm-1 with amplitudes similar to those observed in the GUM region during the second and third flights of MAX. The frequency spectrum is consistent with CMB and inconsistent with thermal emission from interstellar dust. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structure. If all of the structure is attributed to CMB anisotropy with a Gaussian autocorrelation function and a coherence angle of 25', then the most probable values of DeltaT/TCMB in the 3.5, 6, and 9 cm-1 bands are 4.3 (+2.7, -1.6) x 10-5, 2.8 (+4.3, -1.1) x 10-5, and 3.5 (+3.0, -1.6) x 10-5 (95% confidence upper and lower limits), respectively.Comment: 16 pages, postscrip

    Measurements of Anisotropy in the Cosmic Microwave Background Radiation at Degree Angular Scales Near the Stars Sigma Hercules and Iota Draconis

    Get PDF
    We present results from two four-frequency observations centered near the stars Sigma Hercules and Iota Draconis during the fourth flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observations were made of 6 x 0.6-degree strips of the sky with 1.4-degree peak to peak sinusoidal chop in all bands. The FWHM beam sizes were 0.55+/-0.05 degrees at 3.5 cm-1 and a 0.75+/-0.05 degrees at 6, 9, and 14 cm-1. Significant correlated structures were observed at 3.5, 6 and 9 cm-1. The spectra of these signals are inconsistent with thermal emission from known interstellar dust populations. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structures. If the observed structures are attributed to CMB anisotropy with a Gaussian autocorrelation function and a coherence angle of 25', then the most probable values are DT/TCMB = (3.1 +1.7-1.3) x 10^-5 for the Sigma Hercules scan, and DT/TCMB = (3.3 +/- 1.1) x 10^-5 for the Iota Draconis scan (95% confidence upper and lower limits). Finally a comparison of all six MAX scans is presented.Comment: 13 pages, postscript file, 2 figure
    corecore