18 research outputs found

    Convergent activation of two-pore channels mediated by the NAADP-binding proteins JPT2 and LSM12

    Get PDF
    The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) evokes calcium ion (Ca2+) release from endosomes and lysosomes by activating two-pore channels (TPCs) on these organelles. Rather than directly binding to TPCs, NAADP associates with proteins that indirectly confer NAADP sensitivity to the TPC complex. We investigated whether and how the NAADP-binding proteins Jupiter microtubule-associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12) contributed to NAADP-TPC-Ca2+ signaling in human cells. Biochemical and functional analyses revealed that recombinant JPT2 and LSM12 both bound to NAADP with high affinity and that endogenous JPT2 and LSM12 independently associated with TPC1 and TPC2. On the basis of knockout and rescue analyses, both NAADP-binding proteins were required to support NAADP-evoked Ca2+ signaling and contributed to endolysosomal trafficking of pseudotyped coronavirus particles. These data reveal that the NAADP-binding proteins JPT2 and LSM12 convergently regulate NAADP-evoked Ca2+ release and function through TPCs

    Progesterone receptor membrane component 1 facilitates Ca²⁺ signal amplification between endosomes and the endoplasmic reticulum

    Get PDF
    Membrane contact sites (MCSs) between endosomes and the endoplasmic reticulum (ER) are thought to act as specialized trigger zones for Ca2+ signaling, where local Ca2+ released via endolysosomal ion channels is amplified by ER Ca2+-sensitive Ca2+ channels into global Ca2+ signals. Such amplification is integral to the action of the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). However, functional regulators of inter-organellar Ca2+ crosstalk between endosomes and the ER remain poorly defined. Here, we identify progesterone receptor membrane component 1 (PGRMC1), an ER transmembrane protein that undergoes a unique heme-dependent dimerization, as an interactor of the endosomal two pore channel, TPC1. NAADP-dependent Ca2+ signals were potentiated by PGRMC1 overexpression through enhanced functional coupling between endosomal and ER Ca2+ stores and inhibited upon PGRMC1 knockdown. Point mutants in PGMRC1 or pharmacological manipulations that reduced its interaction with TPC1 were without effect. PGRMC1 therefore serves as a TPC1 interactor that regulates ER-endosomal coupling with functional implications for cellular Ca2+ dynamics and potentially the distribution of heme

    The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand

    Get PDF
    Schistosomiasis is a debilitating tropical disease caused by infection with parasitic blood flukes. Approximately 260 million people are infected worldwide, underscoring the clinical and socioeconomic impact of this chronic infection. Schistosomiasis is treated with the drug praziquantel (PZQ), which has proved the therapeutic mainstay for over three decades of clinical use. However, the molecular target(s) of PZQ remain undefined. Here we identify a molecular target for the antischistosomal eutomer - (R)-PZQ - which functions as a partial agonist of the human serotoninergic 5HT2B receptor. (R)-PZQ modulation of serotoninergic signaling occurs over a concentration range sufficient to regulate vascular tone of the mesenteric blood vessels where the adult parasites reside within their host. These data establish (R)-PZQ as a G-protein-coupled receptor ligand and suggest that the efficacy of this clinically important anthelmintic is supported by a broad, cross species polypharmacology with PZQ modulating signaling events in both host and parasite

    Convergent activation of Ca2+ permeability in two-pore channel 2 through distinct molecular routes

    Get PDF
    TPC2 is a pathophysiologically relevant lysosomal ion channel that is activated directly by the phosphoinositide PI(3,5)P2 and indirectly by the calcium ion (Ca2+)-mobilizing molecule NAADP through accessory proteins that associate with the channel. TPC2 toggles between PI(3,5)P2-induced, sodium ion (Na+)-selective and NAADP-induced, Ca2+-permeable states in response to these cues. To address the molecular basis of polymodal gating and ion-selectivity switching, we investigated the mechanism by which NAADP and its synthetic functional agonist, TPC2-A1-N, induced Ca2+ release through TPC2 in human cells. Whereas NAADP required the NAADP-binding proteins JPT2 and LSM12 to evoke endogenous calcium ion signals, TPC2-A1-N did not. Residues in TPC2 that bind to PI(3,5)P2 were required for channel activation by NAADP but not for activation by TPC2-A1-N. The cryptic voltage-sensing region of TPC2 was required for the actions of TPC2-A1-N and PI(3,5)P2 but not for those of NAADP. These data mechanistically distinguish natural and synthetic agonist action at TPC2 despite convergent effects on Ca2+ permeability and delineate a route for pharmacologically correcting impaired NAADP-evoked Ca2+ signals

    Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography

    Get PDF
    Acknowledgements This work was supported by the Chief Scientist Office, Scottish Government, Grant COV/ABN/20/01 (Elasmogen, Ltd.), a 2018 Prostate Cancer Foundation Challenge Award (AML), a 2013 Prostate Cancer Foundation Young Investigator Award (AML), NCI R01s CA237272, CA233562, and CA245922 (AML). WEM was supported by the NIH T32 HL007741 and JMT by the NIH T32 AI055433. JSM was funded by NIGMS R01 GM088790. HA was funded by NIGMS R35 GM118047 and NCI P01 CA234228. X-ray diffraction data were collected at the Northeastern Collaborative Access Team beamlines, which are funded by the US National Institutes of Health (NIGMS P30 GM124165). The Pilatus 6M detector on 24-ID-C beamline is funded by a NIH-ORIP HEI grant (S10 RR029205). We thank the Marco Pravetoni lab for providing training and access to the OctetRED96e for BLI experiments.Peer reviewedPublisher PD

    Activation of host transient receptor potential (TRP) channels by praziquantel stereoisomers.

    No full text
    The anthelmintic praziquantel (±PZQ) serves as a highly effective antischistosomal therapy. ±PZQ causes a rapid paralysis of adult schistosome worms and deleterious effects on the worm tegument. In addition to these activities against the parasite, ±PZQ also modulates host vascular tone in blood vessels where the adult worms reside. In resting mesenteric arteries ±PZQ causes a constriction of basal tone, an effect mediated by (R)-PZQ activation of endogenous serotoninergic G protein coupled receptors (GPCRs). Here, we demonstrate a novel vasodilatory action of ±PZQ in mesenteric vessels that are precontracted by high potassium-evoked depolarization, an effect previously reported to be associated with agonists of the transient receptor potential melastatin 8 channel (TRPM8). Pharmacological profiling a panel of 17 human TRPs demonstrated ±PZQ activity against a subset of human TRP channels. Several host TRP channels (hTRPA1, hTRPC3, hTRPC7) were activated by both (R)-PZQ and (S)-PZQ over a micromolar range whereas hTRPM8 showed stereoselective activation by (S)-PZQ. The relaxant effect of ±PZQ in mesenteric arteries was caused by (S)-PZQ, and mimicked by TRPM8 agonists. However, persistence of both (S)-PZQ and TRPM8 agonist evoked vessel relaxation in TRPM8 knockout tissue suggested that canonical TRPM8 does not mediate this (S)-PZQ effect. We conclude that (S)-PZQ is vasoactive over the micromolar range in mesenteric arteries although the molecular mediators of this effect remain to be identified. These data expand our knowledge of the polypharmacology and host vascular efficacy of this clinically important anthelmintic

    Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P2. Five things to know

    No full text
    Two-pore channels are ancient members of the voltage-gated ion channel superfamily that are expressed predominantly on acidic organelles such as endosomes and lysosomes. Here we review recent advances in understanding how TPCs are activated by their ligands and identify five salient features: (1) TPCs are Ca2+-permeable non-selective cation channels gated by NAADP. (2) NAADP activation is indirect through associated NAADP receptors. (3) TPCs are also Na+-selective channels gated by PI(3,5)P2. (4) PI(3,5)P2 activation is direct through a structurally-resolved binding site. (5) TPCs switch their ion selectivity in an agonist-dependent manner

    NAADP-binding proteins find their identity

    No full text
    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from endosomes and lysosomes by activating ion channels called two-pore channels (TPCs). However, no NAADP-binding site has been identified on TPCs. Rather, NAADP activates TPCs indirectly by engaging NAADP-binding proteins (NAADP-BPs) that form part of the TPC complex. After a decade of searching, two different NAADP-BPs were recently identified: Jupiter microtubule associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12). These discoveries bridge the gap between NAADP generation and NAADP activation of TPCs, providing new opportunity to understand and manipulate the NAADP-signaling pathway. The unmasking of these NAADP-BPs will catalyze future studies to define the molecular choreography of NAADP action

    Comparison of responses to TRPM8 ligands in wild type and TRPM8 KO mice.

    No full text
    <p>(<b>A-C</b>) Responses to the TRPM8 agonists (A) menthol (300μM), (B) icilin (50μM) and (C) WS-12 (50μM) in wild type (WT, black) and TRPM8 knockout mice (TRPM8 KO, purple) when applied during the sustained phase of a KPSS-evoked contraction (shown by black circle). (<b>D</b>) Similar assay for (<i>S</i>)-PZQ (50μM) evoked relaxation during KPSS-evoked contraction in wild type (WT, black) and TRPM8 knockout mice (TRPM8 KO, purple). (<b>E</b>) Cumulative dataset measuring (<i>S</i>)-PZQ (50μM) evoked relaxation from experiments such as shown in (D). Data represent mean±s.e.m. from averaged measurements from mesenteric vessel strips from n≥3 mice.</p
    corecore