49 research outputs found

    Watershed management, efforts beyond farm level in southern Mali

    Get PDF

    Impact of land use changes and management practices on groundwater resources in Kolar district, Southern India

    Get PDF
    Study region: This study analyzes the impact of land use changes on the hydrology of Kolar district in the state of Karnataka, India. Kolar receives on average 565 mm (σ = 130) rainfall during June to October and has a wide gap between its water supply and demand. Study focus: This research identifies the reasons and causes of the gap. A water balance model was successfully calibrated and validated against measurements of groundwater level, recharge and surface runoff. New hydrological insights for the region: The study revealed that between 1972 and 2011, there was a major shift from grass and rainfed crop lands to eucalyptus plantation and irrigated cultivation. About 17.7 % and 18 % of the district area converted into eucalyptus plantation and irrigated lands during this period, respectively. Eucalyptus plantations tended to cause large losses by ET leading to increase in soil moisture deficit and reduction in the recharge to groundwater and in surface runoff (approx. 30 %). The irrigation demand of the district increased from 57 mm (1972) to 140 mm (2011) which resulted in increased groundwater abstraction by 145 %. The expansion of the irrigated area is the major contributing factor for widening the demand-supply gap (62 %) of the freshwater availability. Results could help various stakeholders, including district and national authorities to develop the most suitable water management strategies in order to close the gap between water supply and demand

    Towards climate-smart agricultural policies and investments in Telangana

    Get PDF
    This briefing note summarizes the key findings of the “Scaling up climate-smart agriculture in the Telangana State” project, carried out by the International Crops Research Institute for the Semi-Arid Tropics and partners, between 1st January 2016 and 31st December 2017

    Monitoring changes in the cultivation of pigeonpea and groundnut in Malawi using time series satellite imagery for sustainable food systems

    Get PDF
    Malawi, in south-eastern Africa, is one of the poorest countries in the world. Food security in the country hinges on rainfed systems in which maize and sorghum are staple cereals and groundnut and pigeonpea are now major grain legume crops. While the country has experienced a considerable reduction in forest lands, population growth and demand for food production have seen an increase in the area dedicated to agricultural crops. From 2010, pigeonpea developed into a major export crop, and is commonly intercropped with cereals or grown in double-up legume systems. Information on the spatial extent of these crops is useful for estimating food supply, understanding export potential, and planning policy changes as examples of various applications. Remote sensing analysis offers a number of efficient approaches to deliver spatial, reproducible data on land use and land cover (LULC) and changes therein. Moderate Resolution Imaging Spectroradiometer (MODIS) products (fortnightly and monthly) and derived phenological parameters assist in mapping cropland areas during the agricultural season, with explicit focus on redistributed farmland. Owing to its low revisit time and the availability of long-term period data, MODIS offers several advantages, e.g., the possibility of obtaining cloud-free Normalized Difference Vegetation Index (NDVI) profile and an analysis using one methodology applied to one sensor at regular acquisition dates, avoiding incomparable results. To assess the expansion of areas used in the production of pigeonpea and groundnut resulting from the release of new varieties, the spatial distribution of cropland areas was mapped using MODIS NDVI 16-day time-series products (MOD13Q1) at a spatial resolution of 250 m for the years 2010–2011 and 2016–2017. The resultant cropland extent map was validated using intensive ground survey data. Pigeonpea is mostly grown in the southern dry districts of Mulanje, Phalombe, Chiradzulu, Blantyre and Mwanza and parts of Balaka and Chikwawa as a groundnut-pigeonpea intercrop, and sorghum-pigeonpea intercrop in Mzimba district. By 2016, groundnut extent had increased in Mwanza, Mulanje, and Phalombe and fallen in Mzimba. The result indicates that the area planted with pigeonpea had increased by 29% (75,000 ha) from 2010–2011 to 2016–2017. Pigeonpea expansion in recent years has resulted from major export opportunities to Asian countries like India, and its consumption by Asian expatriates all over the world. This study provides useful information for policy changes and the prioritization of resources allocated to sustainable food production and to support smallholder farmer

    Assessing potential locations for flood-based farming using satellite imagery: a case study of Afar region, Ethiopia

    Get PDF
    The dry lowlands of Ethiopia are seasonally affected by long periods of low rainfall and, coinciding with rainfall in the Amhara highlands, flood waters which flow onto the lowlands resulting in damage to landscapes and settlements. In an attempt to convert water from storm generated floods into productive use, this study proposes a methodology using remote sensing data and geographical information system tools to identify potential sites where flood spreading weirs may be installed and farming systems developed which produce food and fodder for poor rural communities. First, land use land cover maps for the study area were developed using Landsat-8 and MODIS temporal data. Sentinel-1 data at 10 and 20 m resolution on a 12-day basis were then used to determine flood prone areas. Slope and drainage maps were derived from Shuttle RADAR Topography Mission Digital Elevation Model at 90 m spatial resolution. Accuracy assessment using ground survey data showed that overall accuracies (correctness) of the land use/land cover classes were 86% with kappa 0.82. Coinciding with rainfall in the uplands, March and April are the months with flood events in the short growing season (belg) and June, July and August have flood events during the major (meher) season. In the Afar region, there is potentially >0.55 m ha land available for development using seasonal flood waters from belg or meher seasons. During the 4 years of monitoring (2015–2018), a minimum of 142,000 and 172,000 ha of land were flooded in the belg and meher seasons, respectively. The dominant flooded areas were found in slope classes of <2% with spatial coverage varying across the districts. We concluded that Afar has a huge potential for flood-based technology implementation and recommend further investigation into the investments needed to support new socio-economic opportunities and implications for the local agro-pastoral communities

    Geographic priorities for research and development on dryland cereals and legumes

    Get PDF
    Dryland cereal and legume crops have often received less attention than maize, wheat and rice in terms of research and development priorities. But these crops are important globally because they serve populations living in poverty and particular socioeconomic and environmental niches. Compared to other crops, less is known about the global distribution of dryland cereal and legume crops and the conditions where they are grown. This research reports on an international effort to compile geographic information on cereal and legume crops and the conditions under which they are cultivated.. The study suggested that dryland cereal and legume crops should be given priority in 18 farming systems worldwide, representing 160 million ha. The priority regions include the drier areas of South Asia, West and East Africa, Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, among other biotic and abiotic constraints. They represent 60% of the global poor and malnourished and make up half of the global population

    A Review of the Available Land Cover and Cropland Maps for South Asia

    No full text
    A lack of accuracy, uniqueness and the absence of systematic classification of cropland categories, together with long-pending updates of cropland mapping, are the primary challenges that need to be addressed in developing high-resolution cropland maps for south Asia. In this review, we analyzed the details of the available land cover and cropland maps of south Asia on national and regional scales in south Asia and on a global scale. Here, we highlighted the methodology adopted for classification, datasets used, classification system used for classifying different land covers and croplands and the resolution of datasets available. This listed review of different available datasets can help the reader to know which datasets to be used in their study and to understand which methodology to be chosen to further developing the accurate high-resolution land cover and cropland maps for advanced studies and for better understanding of ground reality in a timely updated version. We tried to identify the major concerns, particularly the inadequacy of knowledge regarding the spatial distribution of major crop types within south Asia, which hinder policy and strategic investment and delay the efforts to improve food security for a rapidly growing human population at a time of constant market instability and changing global climate. The overall focus of this paper is on reviewing the need for timely updated high-resolution cropland maps of south Asia

    Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling

    No full text
    Groundwater development across much of sub-Saharan Africa is constrained by a lack of knowledge on the suitability of aquifers for borehole construction. The main objective of this study was to map groundwater potential at the country-scale for Ghana to identify locations for developing new supplies that could be used for a range of purposes. Groundwater potential zones were delineated using remote sensing and geographical information system (GIS) techniques drawing from a database that includes climate, geology, and satellite data. Subjective scores and weights were assigned to each of seven key spatial data layers and integrated to identify groundwater potential according to five categories ranging from very good to very poor derived from the total percentage score. From this analysis, areas of very good groundwater potential are estimated to cover 689,680 ha (2.9 % of the country), good potential 5,158,955 ha (21.6 %), moderate potential 10,898,140 ha (45.6 %), and poor/very poor potential 7,167,713 ha (30 %). The results were independently tested against borehole yield data (2,650 measurements) which conformed to the anticipated trend between groundwater potential and borehole yield. The satisfactory delineation of groundwater potential zones through spatial modeling suggests that groundwater development should first focus on areas of the highest potential. This study demonstrates the importance of remote sensing and GIS techniques in mapping groundwater potential at the country-scale and suggests that similar methods could be applied across other African countries and regions

    Vegetation phenology to partition groundwater- from surface water-irrigated areas using MODIS 250-m time-series data for the Krishna River basin

    No full text
    In Bloschl, G.; van de Giesen, N.; Muralidharan, D.; Ren, L.; Seyler, F.; Sharma, U.; Vrba, J. (Eds.). Improving integrated surface and groundwater resources management in a vulnerable and changing world: proceedings of Symposium JS.3 at the Joint Convention of the International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH), Hyderabad, India, 6-12 September 2009. Wallingford, UK: International Association of Hydrological Sciences (IAHS)IAHS Publication 330This paper describes a remote sensing based vegetation-phenology approach to accurately separate out and quantify groundwater irrigated areas from surface-water irrigated areas in the Krishna River basin (265 752 km2), India, using MODIS 250-m every 8-day near continuous time series for 2000-2001. Temporal variations in the Normalized Difference Vegetation Index (NDVI) pattern, depicting phenology, obtained for the irrigated classes enabled demarcation between: (a) irrigated surface-water double crop, (b) irrigated surface-water continuous crop, and (c) irrigated groundwater mixed crops. The NDVI patterns were found to be more consistent in areas irrigated with groundwater due to the continuity of water supply. Surface water availability, however, was dependent on canal water release that affected time of crop sowing and growth stages, which was in turn reflected in the NDVI pattern. Double-cropped (IDBL) and light irrigation (IL) have relatively late onset of greenness, because they use canal water from reservoirs that drain large catchments and take weeks to fill. Minor irrigation and groundwater-irrigated areas have early onset of greenness because they drain smaller catchments where aquifers and reservoirs fill more quickly. Vegetation phonologies of nine distinct classes consisting of irrigated, rainfed, and other land-use classes were derived using MODIS 250-m near continuous time-series data that were tested and verified using groundtruth data, Google Earth very high resolution (sub-metre to 4 m) imagery, and state-level census data. Fuzzy classification accuracies for most classes were around 80% with class mixing mainly between various irrigated classes. The areas estimated from MODIS were highly correlated with census data (R-squared value of 0.86)

    Quantifying Production Losses due to Drought and Submergence of Rainfed Rice at the households level Using Remotely Sensed MODIS data.

    No full text
    Combining remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) data with Bangladesh Household Income and Expenditure Survey (HIES) data, this study estimates losses in rainfed rice production at the household level. In particular, we estimated the rice areas affected by drought and submergence from remotely sensed MODIS data and rice production from Household Income and Expenditure Survey (HIES) data for 2000, 2005 and 2010. Applying two limit Tobit estimation method, this study demonstrated that both drought and submergence significantly affected rice production. Findings reveal that on average, a one percent increase in drought affected area at district level reduces Aman season rice production by approximately 1382 kilograms per household on average, annually. Similarly, a one percent increase in drought area reduces rainfed Aus season rice production by approximately 693 kilograms per household, on average, annually. Based on the findings the paper suggests disseminating and developing drought and submergence tolerant rice and also short duration rice varieties to minimize loss caused by drought and submergence in Aus and Aman rice seasons
    corecore