4 research outputs found

    Pedal de efectos digital para guitarra basado en FPGA

    Get PDF
    En este proyecto se implementa un pedal de efectos para guitarra eléctrica sobre la placa de desarrollo Altera-DE1 SoC, que incluye una FPGA (dispositivo lógico programable). Para ello se recurre al procesado de señales digitales. Se ha construido un prototipo de unidad multi-efectos con capacidad de ser modificable y una buena calidad de sonido

    Pedal de efectos digital para guitarra basado en FPGA

    Get PDF
    En este proyecto se implementa un pedal de efectos para guitarra eléctrica sobre la placa de desarrollo Altera-DE1 SoC, que incluye una FPGA (dispositivo lógico programable). Para ello se recurre al procesado de señales digitales. Se ha construido un prototipo de unidad multi-efectos con capacidad de ser modificable y una buena calidad de sonido

    Introducing the Electronic Knowledge Framework into the Traditional Automotive Suppliers’ Industry: From Mechanical Engineering to Mechatronics

    Get PDF
    The automotive sector is undergoing radical changes. New trends such as electrification, autonomous driving, connectivity, and car-sharing—to name a few—are disturbing the carmakers, which must satisfy their clients while meeting the increasingly strict environmental regulations. This pressure also falls on automotive parts suppliers, which now are asked to manufacture high-added-value integral systems, while struggling to keep a very adjusted price. As traditional automotive components evolve into electronic systems, suppliers must gain digital mastery to remain competitive. This paper presents different ways of introducing e-skills in a company and illustrates this with some examples from the Basque automotive industry. The aim is to encourage corporations to take the step towards digitalization, providing different options for them to choose the one that best suits their current scenario. For this study we have analyzed the literature and the press releases of the component manufacturers and interviewed staff from some of them. This research seeks to provide solutions so that the automotive sector remains competitive, as it is a strategic sector for the economy and employment.This work has been partially supported by the grant ‘Ayudas para el desarrollo de proyectos de I+D mediante la contratación de personas doctoradas y la realización de doctorados industriales, programa BIKAINTEK 2019’, by the Department of Economic Development, Sustainability and Environment of the Basque Government. Additionally, this work has been partially supported by Eusko Jaularitza-Gobierno Vasco (HAZITEK ESTRATEGICOS 2020 ZL-2020/00022-PILAR-y 2021 ZL-2021/00931-COMMUTE-), by CDTI (IDI-20201264) and FEDER funds

    Next-Generation Pedal: Integration of Sensors in a Braking Pedal for a Full Brake-by-Wire System

    Get PDF
    This article presents a novel approach to designing and validating a fully electronic braking pedal, addressing the growing integration of electronics in vehicles. With the imminent rise of brake-by-wire (BBW) technology, the brake pedal requires electronification to keep pace with industry advancements. This research explores technologies and features for the next-generation pedal, including low-power consumption electronics, cost-effective sensors, active adjustable pedals, and a retractable pedal for autonomous vehicles. Furthermore, this research brings the benefits of the water injection technique (WIT) as the base for manufacturing plastic pedal brakes towards reducing cost and weight while enhancing torsional stiffness. Communication with original equipment manufacturers (OEMs) has provided valuable insights and feedback, facilitating a productive exchange of ideas. The findings include two sensor prototypes utilizing inductive technology and printed-ink gauges. Significantly, reduced power consumption was achieved in a Hall-effect sensor already in production. Additionally, a functional BBW prototype was developed and validated. This research presents an innovative approach to pedal design that aligns with current electrification trends and autonomous vehicles. It positions the braking pedal as an advanced component that has the potential to redefine industry standards. In summary, this research significantly contributes to the electronic braking pedal technology presenting the critical industry needs that have driven technical studies and progress in the field of sensors, electronics, and materials, highlighting the challenges that component manufacturers will inevitably face in the forthcoming years.This work has been partially supported by the grant “Ayudas para el desarrollo de proyectos de I+D mediante la contratación de personas doctoradas y la realización de doctorados industriales, programa BIKAINTEK 2019” by the Department of Economic Development, Sustainability, and Environment of the Basque Government. Additionally, this work has been partially supported by the Government of Spain, through the Center for the Development of Industrial Technology (CDTI) under grant agreement IDI-20200198 and by Eusko Jaularitza-Gobierno Vasco (SOC4CRIS KK-2023/00015)
    corecore