14 research outputs found

    Detection of C1 inhibitor (SERPING1/C1NH) mutations in exon 8 in patients with hereditary angioedema: evidence for 10 novel mutations

    Get PDF
    Hereditary angioedema (HAE) is caused by mutations in the C1 inhibitor gene (SERPING1, C1NH) and the result is C1 inhibitor deficiency, either in levels or function. We have searched exon 8 for mutations by direct sequencing and analyzed the rest of the exons by SSCP in 87 Spanish families affected by HAE. Out of 87 screened families, we have detected exon 8 mutations in 26. Among these, 17 different mutations were identified: 14 point mutations and 3 frameshift. Seven of the point mutations and the three frameshift were not previously reported. Mutations were: S438P; R444P; V451G; W460X; V468D; G471E; X479R; S417fsX427; I440fsX450; E429fsX450. The rest of the families presented previously reported mutations, 5 missense and two nonsense. In none of the 26 families was an additional change identified in the rest of the exons by SSCP, and, in 20 out of the 22 families with point mutation, we verified that the mutation did not affect a healthy relative. Seven of these families had no history of the disease, and in five of them we were able to verify that the progenitors did not have the mutation. Therefore, they were de novo mutations

    Interleukin-10 polymorphisms in Spanish IgA deficiency patients: a case-control and family study

    Get PDF
    BACKGROUND: IgA deficiency (IgAD) is the most common primary immunodeficiency in Caucasians. Genetic and environmental factors are suspected to be involved in the development of the disease. Interleukin-10 (IL-10) is a cytokine with stimulatory activity on immunoglobulin production and it may be an important regulator in IgAD pathogenesis. The IL-10 gene contains several single nucleotide polymorphisms (SNPs) and two polymorphic microsatellites located in the 5'-flanking region. Our aim was to ascertain if any of these polymorphic markers are associated or linked to IgAD in Spanish patients. METHODS: We genotyped 278 patients with IgAD and 573 ethnically matched controls for the microsatellites IL-10R and IL-10G and for three single nucleotide polymorphisms at positions -1082, -819 and -592 in the proximal promoter of the gene. We also included in this study the parents of 194 patients in order to study the IL-10 haplotypes transmitted and not transmitted to the affected offspring. RESULTS: The only allele where a significant difference was observed in the comparison between IgA deficiency patients and controls was the IL-10G12 allele (OR = 1.58 and p = 0.021). However, this p value could not withstand a Bonferroni correction. None of the IL-10R or promoter SNP alleles was found at a different frequency when patients were compared with controls. CONCLUSION: Our data do not show any significant difference in IL-10 polymorphism frequencies between control and IgAD patient samples. Their haplotype distribution among patients and controls was also equivalent and therefore these microsatellites and SNPs do not seem to influence IgAD susceptibility

    High-Density SNP Mapping of the HLA Region Identifies Multiple Independent Susceptibility Loci Associated with Selective IgA Deficiency

    Get PDF
    Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10−57; OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10−17; OR = 4.28) and the DRB1*1501 (combined P = 2.24×10−35; OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis

    Hereditary angioedema: the mutation spectrum of SERPING1/C1NH in a large Spanish cohort

    No full text
    Hereditary angioedema (HAE) is a disease caused by defects in the C1 inhibitor gene (SERPING1/C1NH). We screened the entire C1NH gene for mutations in a large series of 87 Spanish families (77 with type I, and 10 with type II HAE) by SSCP, sequencing, Southern blotting, and quantitative multiplex PCR of short fluorescent fragments (QMPSF), and we characterized several defects at the mRNA level. We found large rearrangements in 13 families, and point mutations or microdeletions/insertions in 74 families. The 13 large rearrangements included nine exon deletions, of which at least eight were distinct, two were distinct exon duplications, and two were rearrangements whose precise nature could not be determined. We confirmed that exon 4 is particularly prone to rearrangements. Thirty-six mutations were unreported, and included 10 microdeletions/insertions, 10 missense, five nonsense, eight splicing, and three splicing or missense mutations. Moreover, we detected six novel uncharacterized sequence variants (USV). RT-PCR studies showed that in addition to several intronic splice site mutations tested, the exonic mutations c.882C4G and c.884T4G, located near the 30 end of exon 5, also produced exon skipping. This is the first evidence of SERPING1/C1NH mutations in coding regions that differ from the canonical splice sites that affect splicing, which suggests the presence of an exonic splicing enhancer (ESE) in exon 5

    First case of homozygous C1 inhibitor deficiency

    No full text
    Background: C1 Inhibitor (C1-Inh) deficiency causes angioedema and can be hereditary (HAE), caused by mutations in the C1-Inh gene (C1NH), or acquired (AAE). Patients with HAE show a complement profile different from that of patients with AAE with normal levels of C1 (C1q, C1r, and C1s). Objective: We sought to characterize the complement profile of a patient with HAE and a mutation in homozygosis in the C1NH gene (c.1576T>G, Ile462Ser) and study his family. Methods: Biochemical diagnosis of HAE was confirmed by analyzing the C1NH gene. Further studies on the levels and activation states of the C1q, C1r, C1s, and C1-Inh components of the classical pathway of complement activation were also performed. Results: Another 7 members of the family were given diagnoses of HAE: 1 was homozygous and 6 were heterozygous for the C1NH mutation c.1576T>G. The homozygous patients showed undetectable C1q levels, reduced C1s levels, the circulating active form of C1r, and a C1-Inh mostly in its cleaved inactive form in plasma. Conclusion: This is the first report of patients homozygous for a mutation affecting the coding region of C1NH. These patients showed a unique activation and consumption profile of the classical complement activation pathway different from that commonly observed in patients with HAE but similar to that of patients with AAE. Clinical implications: The most common HAE treatment is attenuated androgens, which increase the C1NH gene transcription levels. Because the homozygous patients lack a wild-type allele, long-term prophylactic treatment with attenuated androgens might not be advisable

    A novel X–linked gene, DDP, shows mutations in families with deafness (DFN–1), dystonia, mental deficiency and blindness

    No full text
    In 1960, progressive sensorineural deafness (McKu-sick 304700, DFN-1) was shown to be X-linked based on a description of a large Norwegian pedigree1 . More recently, it was shown that this original DFN-1 family represented a new type of recessive neurodegenerative syndrome characterized by postlingual progressive sensorineural deafness as the first presenting symptom in early childhood, followed by progressive dystonia, spasticity, dysphagia, mental deterioration, paranoia and cortical blindness. This new disorder, termed Mohr-Tranebjasrg syndrome (referred to here as DFN-1/MTS) was mapped to the Xq21.3–Xq22 region2. Using positional information from a patient with a 21-kb deletion in chromosome Xq22 and sensorineural deafness along with dystonia, we characterized a novel transcript lying within the deletion as a candidate for this complex syndrome. We now report small deletions in this candidate gene in the original DFN-1/MTS family, and in a family with deafness, dystonia and mental deficiency but not blindness. This gene, named DDP (deaf-ness/dystonia peptide), shows high levels of expression in fetal and adult brain. The DDP protein demonstrates striking similarity to a predicted Schizosaccharomyces pombe protein of no known function. Thus, is it likely that the DDP gene encodes an evolutionarily conserved novel polypeptide necessary for normal human neurological development

    Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency.

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldTo understand the genetic predisposition to selective immunoglobulin A deficiency (IgAD), we performed a genome-wide association study in 430 affected individuals (cases) from Sweden and Iceland and 1,090 ethnically matched controls, and we performed replication studies in two independent European cohorts. In addition to the known association of HLA with IgAD, we identified association with a nonsynonymous variant in IFIH1 (rs1990760G>A, P = 7.3 x 10(-10)) which was previously associated with type 1 diabetes and systemic lupus erythematosus. Variants in CLEC16A, another known autoimmunity locus, showed suggestive evidence for association (rs6498142C>G, P = 1.8 x 10(-7)), and 29 additional loci were identified with P < 5 x 10(-5). A survey in IgAD of 118 validated non-HLA autoimmunity loci indicated a significant enrichment for association with autoimmunity loci as compared to non-autoimmunity loci (P = 9.0 x 10(-4)) or random SNPs across the genome (P < 0.0001). These findings support the hypothesis that autoimmune mechanisms may contribute to the pathogenesis of IgAD

    Representation of the haplotypes carrying the <i>HLA-DRB1</i> alleles most associated with IgAD.

    No full text
    <p>Reconstructed extended haplotypes using the final set of 49 SNPs spanning the classical HLA region were aligned to the respective extended haplotype. Shown here are the reconstructed haplotypes carrying the HLA-DRB1*03 (a), -DRB1*07 (b), -DRB1*0102 (c) and -DRB1*15 (d) alleles. Recombinant haplotypes represent all haplotypes containing the same <i>HLA-DRB1</i> allele in association with a different <i>HLA-B</i> allele, as compared to the respective extended haplotype. Vertical bars delimit the HLA Class III region. N, Number of haplotypes. Haplotype frequencies in the Swedish/Icelandic, Spanish and Icelandic cohorts are detailed in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1002476#pgen-1002476-t001" target="_blank">Table 1</a>.</p
    corecore