83 research outputs found

    Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking

    Get PDF
    Novel therapeutics designed to target the polymeric matrix of biofilms requires innovative techniques to accurately assess their efficacy. Here, multiple particle tracking (MPT) was developed to characterize the physical and mechanical properties of antimicrobial resistant (AMR) bacterial biofilms and to quantify the effects of antibiotic treatment. Studies employed nanoparticles (NPs) of varying charge and size (40–500 nm) in Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA) biofilms and also in polymyxin B (PMB) treated Escherichia coli biofilms of PMB-sensitive (PMBSens) IR57 and PMB-resistant (PMBR) PN47 strains. NP size-dependent and strain-related differences in the diffusion coefficient values of biofilms were evident between PAO1 and MRSA. Dose-dependent treatment effects induced by PMB in PMBSens E. coli biofilms included increases in diffusion and creep compliance (P < 0.05), not evident in PMB treatment of PMBR E. coli biofilms. Our results highlight the ability of MPT to quantify the diffusion and mechanical effects of antibiotic therapies within the AMR biofilm matrix, offering a valuable tool for the pre-clinical screening of anti-biofilm therapies

    Phospho-4e-BP1 and eIF4E overexpression synergistically drives disease progression in clinically confined clear cell renal cell carcinoma

    Get PDF
    Clear cell renal cell carcinoma (ccRCC), the most aggressive and lethal form of renal cell carcinoma accounts for over 90% of metastasis that occur following curative surgery for clinically confined disease. High relapse rates have prompted the evaluation of targeted therapies for the prevention or delay of metastatic disease in high-risk patients, with biomarkers offering significant potential to guide and improve patient management in this setting. In this current study we examined the value of the 4E-BP1/eIF4E axis for prognostic significance and risk stratification in patients with clinically confined ccRCC. This axis is a critical convergence point for many signalling pathways that are targeted by current therapies for the treatment of advanced RCC. Immunohistochemistry for phosphorylated 4E-BP1 (p4E-BP1) and total eIF4E was performed on tissue microarrays containing tumour cores from 135 patients with localised ccRCC. For both biomarkers 39% of all evaluable cores stained positive, with a strong correlation observed between the presence of p4E-BP1 and the overexpression of eIF4E within the same tumour (P = 0.005). Further, the combined expression of p4E-BP1 and eIF4E was associated with significantly worse disease-free survival of 2.9 vs 5.7 yrs compared to patients whose tumours expressed only one, or neither, of the biomarkers (P < 0.001). Cox-regression analysis confirmed the ability of the p4EBP1/eIF4E signature to independently identify high-risk patients with a Hazard Ratio of 4.2 (CI = 2.1-8.6; P < 0.001), compared to 3.3 for tumour grade 3 and 4, and 2.3 for tumour stage 3 and 4. These data show the powerful prognostic value of the p4E-BP1/eIF4E signature for potential management of patients with clinically confined ccRCC, and in addition provides insights into the possible key synergistic determinants of disease progression and treatment response

    Endocytic uptake, transport and macromolecular interactions of anionic PAMAM dendrimers within lung tissue

    Get PDF
    Purpose: Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Methods: Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Results: Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. Conclusions: PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung

    A Cell-based Computational Modeling Approach for Developing Site-Directed Molecular Probes

    Get PDF
    Modeling the local absorption and retention patterns of membrane-permeant small molecules in a cellular context could facilitate development of site-directed chemical agents for bioimaging or therapeutic applications. Here, we present an integrative approach to this problem, combining in silico computational models, in vitro cell based assays and in vivo biodistribution studies. To target small molecule probes to the epithelial cells of the upper airways, a multiscale computational model of the lung was first used as a screening tool, in silico. Following virtual screening, cell monolayers differentiated on microfabricated pore arrays and multilayer cultures of primary human bronchial epithelial cells differentiated in an air-liquid interface were used to test the local absorption and intracellular retention patterns of selected probes, in vitro. Lastly, experiments involving visualization of bioimaging probe distribution in the lungs after local and systemic administration were used to test the relevance of computational models and cell-based assays, in vivo. The results of in vivo experiments were consistent with the results of in silico simulations, indicating that mitochondrial accumulation of membrane permeant, hydrophilic cations can be used to maximize local exposure and retention, specifically in the upper airways after intratracheal administration

    Time course study of oxidative and nitrosative stress and antioxidant enzymes in K(2)Cr(2)O(7)-induced nephrotoxicity

    Get PDF
    BACKGROUND: Potassium dichromate (K(2)Cr(2)O(7))-induced nephrotoxicity is associated with oxidative and nitrosative stress. In this study we investigated the relation between the time course of the oxidative and nitrosative stress with kidney damage and alterations in the following antioxidant enzymes: Cu, Zn superoxide dismutase (Cu, Zn-SOD), Mn-SOD, glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). METHODS: Nephrotoxicity was induced in rats by a single injection of K(2)Cr(2)O(7). Groups of animals were sacrificed on days 1,2,3,4,6,8,10, and 12. Nephrotoxicity was evaluated by histological studies and by measuring creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and total protein. Oxidative and nitrosative stress were measured by immunohistochemical localization of protein carbonyls and 3-nitrotyrosine, respectively. Cu, Zn-SOD, Mn-SOD, and CAT were studied by immunohistochemical localization. The activity of total SOD, CAT, GPx, and GR was also measured as well as serum and kidney content of chromium and urinary excretion of NO(2 )(-)/NO(3)(-). Data were compared by two-way analysis of variance followed by a post hoc test. RESULTS: Serum and kidney chromium content increased reaching the highest value on day 1. Nephrotoxicity was made evident by the decrease in creatinine clearance (days 1–4) and by the increase in serum creatinine (days 1–4), BUN (days 1–6), urinary excretion of NAG (days 1–4), and total protein (day 1–6) and by the structural damage to the proximal tubules (days 1–6). Oxidative and nitrosative stress were clearly evident on days 1–8. Urinary excretion of NO(2)(-)/NO(3)(- )decreased on days 2–6. Mn-SOD and Cu, Zn-SOD, estimated by immunohistochemistry, and total SOD activity remained unchanged. Activity of GPx decreased on days 3–12 and those of GR and CAT on days 2–10. Similar findings were observed by immunohistochemistry of CAT. CONCLUSION: These data show the association between oxidative and nitrosative stress with functional and structural renal damage induced by K(2)Cr(2)O(7). Renal antioxidant enzymes were regulated differentially and were not closely associated with oxidative or nitrosative stress or with kidney damage. In addition, the decrease in the urinary excretion of NO(2)(-)/NO(3)(- )was associated with the renal nitrosative stress suggesting that nitric oxide was derived to the formation of reactive nitrogen species involved in protein nitration

    Combined expression of caveolin-1 and an activated AKT/mTOR pathway predicts reduced disease-free survival in clinically confined renal cell carcinoma

    Get PDF
    We previously reported that tumour-associated caveolin-1 is a potential biomarker in renal cell carcinoma (RCC), whose overexpression predicts metastasis following surgical resection for clinically confined disease. Much attention has recently focused on the AKT/mTOR pathway in a number of malignancies, including RCC. Since caveolin-1 and the AKT/mTOR signalling cascade are independently shown to be important regulators of tumour angiogenesis, we hypothesised that caveolin-1 interacts with the AKT/mTOR pathway to drive disease progression and metastasis in RCC. The aims of this study were to determine (i) the expression status of the activated AKT/mTOR pathway components (phosphorylated forms) in RCC and (ii) their prognostic value when combined with caveolin-1. Immunohistochemistry for caveolin-1, pAKT, pmTOR, pS6 and p4E-BP1 was performed on tissue microarrays from 174 clinically confined RCCs. Significantly decreased mean disease-free survival was observed when caveolin-1 was coexpressed with either pAKT (2.95 vs 6.14 years), pmTOR (3.17 vs 6.28 years), pS6 (1.45 vs 6.62 years) or p4E-BP1 (2.07 vs 6.09 years) than when neither or any one single biomarker was expressed alone. On multivariate analysis, the covariate of ‘caveolin-1/AKT' (neither alone were influential covariates) was a significant influential indicator of poor disease-free survival with a hazard ratio of 2.13 (95% CI: 1.15–3.92), higher than that for vascular invasion. Tumours that coexpressed caveolin-1 and activated mTOR components were more likely to be larger, higher grade and to show vascular invasion. Our results provide the first clinical evidence that caveolin-1 cooperates with an activated AKT/mTOR pathway in cancer and may play an important role in disease progression. We conclude that evaluation of the ‘caveolin-1/AKT/mTOR axis' in primary kidney tumours will identify subsets of RCC patients who require greater postoperative surveillance and more intensive treatment

    Caveolin expression during chondrogenesis in the avian limb

    No full text
    Caveolin is the principal component and critical structural and functional element of caveolae, omega-shaped plasmalemmal invaginations, which have been implicated in a wide range of cellular processes in several different tissues. In the present study, we have investigated both the spatial and temporal expression of caveolin proteins during chondrogenesis in the avian tibiotarsus at days 10–20 of embryonic development. By using semiquantitative Western blotting, we found that caveolin-1 was clearly expressed in developing avian cartilage. The positive expression of caveolin-1 in cartilage showed an upward trend of accumulation temporally, with the highest levels of expression at 20 days of development. By using immunocytochemistry, we detected all three caveolin proteins in the cells of the outer fibrous articular surface, although caveolin-1 demonstrated the strongest and most consistent reactivity. In all cases, however, immunoreactivity appeared to be concentrated in cells facing the articular cavity. In the epiphyseal cartilage, immunocytochemistry revealed that caveolin-1 was present in the majority of chondrocytes within all layers of the cartilage and at all stages examined. A discrete, intense band of caveolin-1 immunoreactivity was apparent within the layer of flattened cells immediately underlying the proliferating rounded chondrocytes and suggests that caveolin-1 might be involved in regulating the progression of cells through these gradually maturing cell layers. In contrast to the results for caveolin-1, in the case of caveolin-2 and -3, chondrocytes were devoid of immunoreactivity in all regions of the epiphyseal cartilage. Overall, this study demonstrates that caveolin-1, -2, and -3 are expressed during chondrogenesis in the developing avian limb, although the patterns of expression are restricted both spatially and temporally throughout the differentiating cell layers of the cartilage. The results suggest that caveolin proteins might play a differentiation-dependent role during avian chondrogenesis
    corecore