7 research outputs found

    Fractal Propagators in QED and QCD and Implications for the Problem of Confinement

    Get PDF
    We show that QED radiative corrections change the propagator of a charged Dirac particle so that it acquires a fractional anomalous exponent connected with the fine structure constant. The result is a nonlocal object which represents a particle with a roughened trajectory whose fractal dimension can be calculated. This represents a significant shift from the traditional Wigner notions of asymptotic states with sharp well-defined masses. Non-abelian long-range fields are more difficult to handle, but we are able to calculate the effects due to Newtonian gravitational corrections. We suggest a new approach to confinement in QCD based on a particle trajectory acquiring a fractal dimension which goes to zero in the infrared as a consequence of self-interaction, representing a particle which, in the infrared limit, cannot propagate.Comment: To appear in Brazilian Journal of Physics, special edition for the proceedings of IRQCD, Rio de Janeiro, 5-9 June 200

    Genetic parameters of fillet fatty acids and fat deposition in gilthead seabream (Sparus aurata) using the novel 30 k Medfish SNP array

    Get PDF
    Lipid-related traits are important candidates for a breeding goal for gilthead seabream, because they affect both fish and human health, as well as production efficiency. However, to date there have been very few estimates of genetic parameters for these traits, and the genetic relationship between fatty acids and other important traits have never been reported for gilthead seabream. Therefore, the aim of this study was to estimate genomic heritability and genetic relationships of fat deposition traits and individual muscle fatty acids in a commercial population of gilthead seabream using the novel ~30 k MedFish SNP array. In total 967 gilthead seabream fed with a commercial feed were genotyped with the MedFish SNP chip which included ~30 K informative markers for this species. On average, the fish weighed 372 g. The mean content of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) was 822 mg per 100 g fillet. The heritability of muscle fat, viscera weight and percentage viscera were in the range of 0.34–0.46. The genetic correlation of body weight with muscle fat was 0.12, indicating that genetic variation in muscle fat is largely independent of the weight of the fish. The heritability of the product of endogenous fatty acid synthesis (n = 240), palmitoleic acid (16:1n-7), was high (0.43). The estimated heritability of EPA (%) and DHA (%) was 0.39 and 0.33, respectively. Both EPA and DHA had low, non-significant genetic correlations with body weight, and DHA had a negative genetic correlation with muscle fat (−0.53). It is possible to increase EPA and DHA content in gilthead seabream fillets by selective breeding. The high heritability of 16:1n-7, a marker of de novo lipogenesis, suggests that there is a strong genetic component to this metabolic pathway in gilthead seabream. Muscle fat deposition and body weight seem to be independent traits, and selective breeding for faster growth is not likely to influence the proportional content of EPA and DHA

    Asymptotic Infrared Fractal Structure of the Propagator for a Charged Fermion

    Full text link
    It is well known that the long-range nature of the Coulomb interaction makes the definition of asymptotic ``in'' and ``out'' states of charged particles problematic in quantum field theory. In particular, the notion of a simple particle pole in the vacuum charged particle propagator is untenable and should be replaced by a more complicated branch cut structure describing an electron interacting with a possibly infinite number of soft photons. Previous work suggests a Dirac propagator raised to a fractional power dependent upon the fine structure constant, however the exponent has not been calculated in a unique gauge invariant manner. It has even been suggested that the fractal ``anomalous dimension'' can be removed by a gauge transformation. Here, a gauge invariant non-perturbative calculation will be discussed yielding an unambiguous fractional exponent. The closely analogous case of soft graviton exponents is also briefly explored.Comment: Updated with a corrected sign error, longer discussion of fractal dimension, and more reference

    Climate knowledge agenda : Knowledge agenda on climate research for a climate neutral and resilient Europe by Wageningen University and Research KB 34

    No full text
    This climate knowledge agenda is initiated and funded by the KB programme Circular and Climate neutral. In 2020, this programme started as one of the five One Wageningen research programmes. Establishing a One Wageningen Climate Research programme was one of the advices from the One Wageningen Climate strategy to stimulate internal cooperation and to improve the visibility of ourclimate research. The climate knowledge agenda also contributes to the goals of the One Wageningen Climate strategy. The results of this project will be used to draft the future of the KB programme
    corecore